已知反比例函數(shù)圖象過第二象限內(nèi)的點(diǎn)A(-2,m)AB⊥x軸于B,Rt△AOB面積為3, 若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)的圖象上另一點(diǎn)C(n,—),

【小題1】反比例函數(shù)的解析式為           ,m=         ,n=            ;
【小題2】求直線y=ax+b的解析式;
【小題3】在y軸上是否存在一點(diǎn)P,使△PAO為等腰三角形,若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo),若不存在,說明理由。

【小題1】;m="3;" n=4
【小題2】
【小題3】答:存在點(diǎn)P使△PAO為等腰三角形;
點(diǎn)P坐標(biāo)分別為:
P1(0,) ; P2(0,6);  P3(0,) ;  P4(0,)解析:
p;【解析】略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知反比例函數(shù)數(shù)學(xué)公式圖象過第二象限內(nèi)的點(diǎn)A(-2,m)AB⊥x軸于B,Rt△AOB面積為3,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)數(shù)學(xué)公式的圖象上另一點(diǎn)C(n,-數(shù)學(xué)公式),
(1)反比例函數(shù)的解析式為______,m=______,n=______;
(2)求直線y=ax+b的解析式;
(3)在y軸上是否存在一點(diǎn)P,使△PAO為等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第5章《反比例函數(shù)》?碱}集(13):5.2 反比例函數(shù)的圖象與性質(zhì)(解析版) 題型:解答題

已知反比例函數(shù)圖象過第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3.
(1)求k和m的值;
(2)若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函的圖象上另一點(diǎn)C(n,-
①求直線y=ax+b解析式;
②設(shè)直線y=ax+b與x軸交于M,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(44):20.7 反比例函數(shù)的圖象、性質(zhì)和應(yīng)用(解析版) 題型:解答題

已知反比例函數(shù)圖象過第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)的圖象上另一點(diǎn)C(n,-),
(1)求反比例函數(shù)的解析式和直線y=ax+b解析式;
﹙2﹚求△AOC的面積;
(3)在坐標(biāo)軸上是否存在一點(diǎn)P,使△PAO為等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第1章《反比例函數(shù)》?碱}集(15):1.3 反比例函數(shù)的應(yīng)用(解析版) 題型:解答題

已知反比例函數(shù)圖象過第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3.
(1)求k和m的值;
(2)若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函的圖象上另一點(diǎn)C(n,-
①求直線y=ax+b解析式;
②設(shè)直線y=ax+b與x軸交于M,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(40):23.6 反比例函數(shù)(解析版) 題型:解答題

已知反比例函數(shù)圖象過第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3.
(1)求k和m的值;
(2)若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函的圖象上另一點(diǎn)C(n,-
①求直線y=ax+b解析式;
②設(shè)直線y=ax+b與x軸交于M,求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案