【題目】服裝專賣店計劃購進A,B兩種型號的精品女裝.已知3件A型女裝和2件B型女裝共需5400元;2件A型女裝和1件B型女裝共需3200元.
(1)求A,B兩種型號女裝的單價;
(2)專賣店購進A,B兩種型號的女裝共60件,其中A型的件數(shù)不少于B型件數(shù)的2倍,如果B型打八折,那么該專賣店至少需要準備多少貨款.
【答案】(1)A、B型單價分別為:1000元和1200元;(2)59200元
【解析】
(1)根據(jù)等量關(guān)系式:A型女裝費用+B型女裝費用=總費用,列寫方程并求解可得;
(2)設A型x件,則B型(60-x)件,根據(jù)限定條件A型的件數(shù)不少于B型件數(shù)的2倍,可得x的取值范圍,然后根據(jù)一次函數(shù)性質(zhì)得出最少貨款情況.
(1)設A型女裝x件,B型女裝y件
則根據(jù)題意得:
解得:
答:A、B型單價分別為:1000元和1200元;
(2)設A型x件,則B型(60-x)件,設總費用為y元
則:y=1000x+1200(60-x)
化簡得:y=40x+57600
∵A型的件數(shù)不少于B型件數(shù)的2倍
∴x≥2(60-x)
解得:x≥40
∴當x=40時,y取得最小值,最小值為:59200
答:最少貨款為59200元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形是矩形,點在對角線上,點在邊上(點與點、不重合),,且.
(1)求證:四邊形是正方形;
(2)聯(lián)結(jié),交于點,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若兩條拋物線在x軸上經(jīng)過兩個相同點,那么我們稱這兩條拋物線是“同交點拋物線”,在x軸上經(jīng)過的兩個相同點稱為“同交點”,已知拋物線y=x2+bx+c經(jīng)過(﹣2,0)、(﹣4,0),且一條與它是“同交點拋物線”的拋物線y=ax2+ex+f經(jīng)過點(﹣3,3).
(1)求b、c及a的值;
(2)已知拋物線y=﹣x2+2x+3與拋物線yn=x2﹣x﹣n(n為正整數(shù))
①拋物線y和拋物線yn是不是“同交點拋物線”?若是,請求出它們的“同交點”,并寫出它們一條相同的圖像性質(zhì);若不是,請說明理由.
②當直線y=x+m與拋物線y、yn,相交共有4個交點時,求m的取值范圍.
③若直線y=k(k<0)與拋物線y=﹣x2+2x+3與拋物線yn =x2﹣x﹣n (n為正整數(shù))共有4個交點,從左至右依次標記為點A、點B、點C、點D,當AB=BC=CD時,求出k、n之間的關(guān)系式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,點均在格點上,為小正方形邊中點.
(1)的長等于 ______;
(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個點,使其滿足說明點的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形中,動點P從點B出發(fā),沿折線B→C→D→B運動,設點P經(jīng)過的路程為x,的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖2所示,則圖2中的a等于( )
A.25B.20C.12D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的曲邊三角形可按下述方法作出:作等邊三角形;分別以點,,為圓心,以的長為半徑作,,.三段弧所圍成的圖形就是一個曲邊三角形,如果一個曲邊三角形的周長為,那么這個曲邊三角形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點,設該拋物線與x軸的另一個交點為A,頂點為D,連接CD交x軸于點E.
(1)求該拋物線的函數(shù)表達式;
(2)求該拋物線的對稱軸和D點坐標;
(3)點F,G是對稱軸上兩個動點,且FG=2,點F在點G的上方,請直接寫出四邊形ACFG的周長的最小值;
(4)連接BD,若P在y軸上,且∠PBC=∠DBA+∠DCB,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為8,點E是正方形內(nèi)部一點,連接BE,CE,且∠ABE=∠BCE,點P是AB邊上一動點,連接 PD,PE,則PD+PE長度的最小值為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com