【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.
(1)求證:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的長(zhǎng).
【答案】(1)證明見解析,(2)
【解析】試題分析:(1)根據(jù)相似三角形的判定,由已知可證∠A=∠DCB,又因?yàn)?/span>∠ACB=∠BDC=90°,即證△ABC∽△CBD,
(2)根據(jù)勾股定理得到AB=5,根據(jù)三角形的面積公式得到CD=,然后根據(jù)勾股定理即可得到結(jié)論.
(1)證明:∵CD⊥AB,
∴∠BDC=90°.
∴∠A+∠ACD=90°.
∵∠ACB=90°,
∴∠DCB+∠ACD=90°.
∴∠A=∠DCB.
又∵∠ACB=∠BDC=90°,
∴△ABC∽△CBD;
(2)解:∵∠ACB=90°,AC=4,BC=3,
∴AB=5,
∴CD=,
∵CD⊥AB,
∴BD===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 3 | 0 | -1 | 0 | m | 8 | … |
(1)可求得m的值為________;
(2)在坐標(biāo)系畫出該函數(shù)的圖象;
(3)當(dāng)y≥0時(shí),x的取值范圍為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點(diǎn),且DA=DB,O是AB的中點(diǎn),CE是△BCD的中線.
(1)如圖a,連接OC,請(qǐng)直接寫出∠OCE和∠OAC的數(shù)量關(guān)系: ;
(2)點(diǎn)M是射線EC上的一個(gè)動(dòng)點(diǎn),將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點(diǎn)N.
①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;
②若∠BAC=30°,BC=m,當(dāng)∠AON=15°時(shí),請(qǐng)直接寫出線段ME的長(zhǎng)度(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為備戰(zhàn)奧運(yùn)會(huì),中國(guó)女排的姑娘們刻苦訓(xùn)練,為國(guó)爭(zhēng)光,如圖,已知排球場(chǎng)的長(zhǎng)度 OD 為 18 米,位于球場(chǎng)中線處球網(wǎng)的高度 AB 為 2.43 米,一隊(duì)員站在點(diǎn) O 處發(fā)球,排球從點(diǎn) O 的正上方 1.8 米的 C 點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn) O 的水平距離 OE 為 7 米時(shí),到達(dá)最高點(diǎn) G,建立如圖所示的平面直角坐標(biāo)系.
(1)當(dāng)球上升的最大高度為 3.2 米時(shí),求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數(shù)關(guān)系式.(不要求寫出自變量 x 的取值范圍)
(2)在(1)的條件下,對(duì)方距球網(wǎng) 0.5 米的點(diǎn) F 處有一隊(duì)員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網(wǎng)成功?請(qǐng)通過計(jì)算說明.(不考慮排球的大小)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面時(shí),水面寬為.當(dāng)水面上升時(shí)達(dá)到警戒水位,此時(shí)拱橋內(nèi)的水面寬度是多少?
下面給出了解決這個(gè)問題的兩種方法,請(qǐng)補(bǔ)充完整:
方法一:如圖1.以點(diǎn)為原點(diǎn),所在直線為軸,建立平面直角坐標(biāo)系,此時(shí)點(diǎn)的坐標(biāo)為_______,拋物線的項(xiàng)點(diǎn)坐標(biāo)為_______,可求這條拋物線所表示的二次函數(shù)解析式為_______.當(dāng)時(shí),求出此時(shí)自變量的取值,即可解決這個(gè)問題.
方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱軸為軸.建立平面直角坐標(biāo)系,這時(shí)這條拋物線所表示的二次函數(shù)的解析式為_______,當(dāng)水面達(dá)到警戒水位,即_______時(shí),求出此時(shí)自變量的取值為_______,從而得水面寬為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
某同學(xué)遇到這樣一個(gè)問題:在平面直角坐標(biāo)系中,已知直線點(diǎn)在拋物線上,求點(diǎn)到直線的距離.
如圖1,他過點(diǎn)作于點(diǎn)軸分別交軸于點(diǎn)交直線于點(diǎn).他發(fā)現(xiàn),可求出的長(zhǎng),再利用求出的長(zhǎng),即為點(diǎn)到直線的距離.
請(qǐng)回答:
(1)圖1中, ,點(diǎn)到直線的距離 .
參考該同學(xué)思考問題的方法,解決下列問題:
在平面直角坐標(biāo)系中,點(diǎn)是拋物線上的一動(dòng)點(diǎn),設(shè)點(diǎn)到直線的距離為.
(2)如圖2,
①,則點(diǎn)的坐標(biāo)為 ;
②,在點(diǎn)運(yùn)動(dòng)的過程中,求的最小值;
(3)如圖3,,在點(diǎn)運(yùn)動(dòng)的過程中,的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)、 點(diǎn)分別在線段和線段上, 平分.
如圖1,求證:.
如圖2,若.求證:.
在問的條件下,如圖3, 在線段上取一點(diǎn),使.過點(diǎn)作交于點(diǎn),作交于點(diǎn),連接,交于點(diǎn),連接,交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)D,拋物線頂點(diǎn)為H(1,2).
(1)求拋物線的解析式;
(2)點(diǎn)P為直線AD上方拋物線的對(duì)稱軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)S△PAD=3,若在x軸上存在一動(dòng)點(diǎn)Q,使PQ+QB最小,求此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值;
(3)若點(diǎn)E為拋物線上的動(dòng)點(diǎn),點(diǎn)G,F(xiàn)為平面內(nèi)的點(diǎn),以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點(diǎn)的正方形,當(dāng)頂點(diǎn)F或者G恰好落在y軸上時(shí),求點(diǎn)E的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分組合作學(xué)習(xí)”成為我市推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對(duì)“分組合作學(xué)習(xí)”實(shí)施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)如下:
分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣
請(qǐng)結(jié)合圖中信息解答下列問題:
(1)求出分組前學(xué)生學(xué)習(xí)興趣為“高”的所占的百分比為 ;
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖;
(3)通過“分組合作學(xué)習(xí)”前后對(duì)比,請(qǐng)你估計(jì)全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請(qǐng)根據(jù)你的估計(jì)情況談?wù)剬?duì)“分組合作學(xué)習(xí)”這項(xiàng)舉措的看法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com