在△ABC中,P是BC邊上的一個動點(diǎn),以AP為直徑的⊙O分別交AB、AC于點(diǎn)E和點(diǎn)F.

(1)若∠BAC=45°,EF=4,則AP的長為多少?
(2)在(1)條件下,求陰影部分面積.
(3)試探究:當(dāng)點(diǎn)P在何處時,EF最短?請直接寫出你所發(fā)現(xiàn)的結(jié)論,不必證明.

(1)直徑AP=2OE=(2)S陰影=S扇形EOF-SEOF(3)當(dāng)AP⊥BC時,EF最短

解析試題分析:解:(1)連接OE、OF,則OE=OF
∵∠EOF=2∠EAF,而∠EAF=∠BAC=45°
∴∠EOF=90°
∴△EOF是等腰直角三角形
在Rt△EOF中
∴OE=OF=
∴直徑AP=2OE=
(2)S陰影=S扇形EOF-SEOF

(3)在Rt△AEP中,根據(jù)垂徑定理和勾股定理知,當(dāng)AP取最小值時,EF的值最。挥指鶕(jù)點(diǎn)到直線的距離垂線段最短垂線段最短知當(dāng)AP⊥BC時,AP最短.所以當(dāng)AP⊥BC時,EF最短.
考點(diǎn):圓和三角形勾股定理
點(diǎn)評:本題難度中等,主要考查學(xué)生對圓與三角形知識點(diǎn)的掌握與學(xué)習(xí)。做這類題型學(xué)生要注意培養(yǎng)數(shù)形結(jié)合的思維運(yùn)用到考試中去。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,DE是AC的中垂線,AE=3cm,△ABD得周長為13cm,則△ABC的周長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是中線,G是重心,
AB
=
a
,
AD
=
b
,那么
BG
=
 
.(用
a
、
b
表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、在△ABC中,D是邊AB上一點(diǎn),∠ACD=∠B,AB=9,AD=4,那么AC的長為
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD是BC邊上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,則∠C=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.
探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn)∠BOC={90°}+
1
2
∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案