【題目】在△ABC中, ∠ACB=90,AC=BC, 直線MN經(jīng)過點(diǎn)C,且AD⊥MN,BE⊥MN,垂足分別為D,E.
(1) 若直線MN在圖①位置時(shí),猜想AD,BE,DE三條線段具有怎樣的數(shù)量關(guān)系?并且給出證明.
(2) 當(dāng)直線MN在圖②位置時(shí),(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,給出新的結(jié)論,并說明理由.
【答案】(1) DE=AD+BE,證明詳見解析; (2) (1)中的結(jié)論不成立,新結(jié)論:DE=AD-BE
【解析】
(1)根據(jù)題中已知條件,易證,所以可以得出:,,根據(jù),等量代換可得,即可得出結(jié)論;
(2)根據(jù)題中已知條件,易證,所以可以得出:,,根據(jù),等量代換可得即可得出結(jié)論.
解:(1),證明如下:
∵AD⊥MN,
∴∠ADC=90°,
∵在△ADC中,∠ADC=90°,
∴∠DAC+∠ACD=90°,
∵∠DCE=180°,∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠BCE,
在與中
,
∴,
∴,,
∵,
∴.
即:.
(2)(1)中的結(jié)論不成立,新結(jié)論:證明如下:
∵AD⊥MN,
∴∠ADC=90°,
∵在△ADC中,∠ADC=90°,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠BCE,
在與中
,
∴,
∴,,
∵,
∴.
即:(1)中的結(jié)論不成立,新結(jié)論:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點(diǎn)B恰好落在斜邊AC上,與點(diǎn)B′重合,AD為折痕,則DB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( 。
A. 了解全市中學(xué)生對(duì)泰州“三個(gè)名城”含義的知曉度的情況,適合用抽樣調(diào)查
B. 若甲組數(shù)據(jù)方差S甲2=0.39,乙組數(shù)據(jù)方差S乙2=0.27,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C. 某種彩票中獎(jiǎng)的概率是 ,買100張?jiān)摲N彩票一定會(huì)中獎(jiǎng)
D. 數(shù)據(jù)﹣1、1.5、2、2、4的中位數(shù)是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的大小;
(2)若CD=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=+bx+c與一次函數(shù)y=kx﹣3的圖象都經(jīng)過x軸上的點(diǎn)A(4,0)和y軸上點(diǎn)C(0,﹣3).
(1)直接寫出b,c,k的值,b= ,c= ,k= ;
(2)二次函數(shù)與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)M(m,0)在線段AB上運(yùn)動(dòng),過點(diǎn)M作x軸的垂線交直線AC于點(diǎn)D;交拋物線于點(diǎn)P.
①是否存在實(shí)數(shù)m,使△PCD為直角三角形.若存在、求出m的值;若不存在,請(qǐng)說明理由;
②當(dāng)0<m<4時(shí),過D作直線AC的垂線交x軸于點(diǎn)Q,求PD+DQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com