【題目】呈貢區(qū)商場某柜臺銷售每臺進(jìn)價分別為160元、120元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

進(jìn)價、售價均保持不變,利潤銷售收入進(jìn)貨成本

A、B兩種型號的電風(fēng)扇的銷售單價;

若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,求A種型號的電風(fēng)扇最多能采購多少臺?

【答案】1A型電風(fēng)扇單價為200元,B型單價150元;(2)最多能采購37.

【解析】

1)設(shè)AB兩種型號電風(fēng)扇的銷售單價分別為x元、y元,根據(jù)3A型號4B型號的電扇收入1200元,5A型號6B型號的電扇收入1900元,列方程組求解;
2)設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(50-a)臺,根據(jù)金額不多余7500元,列不等式求解;

1)設(shè)A型電風(fēng)扇單價為x元,B型單價y元,則

, 解得:,

答:A型電風(fēng)扇單價為200元,B型單價150元;

2)設(shè)A型電風(fēng)扇采購a臺,則

160a+12050-a≤7500, 解得:a, 最多能采購37.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小楊一家三人隨旅游團(tuán)去九寨溝旅游,小楊把旅途的費用支出情況制成了如圖所示的統(tǒng)計圖.

(1)哪一部分的費用占整個支出的?

(2)若他們共交給旅行社8600元,則在食宿上用去多少元?

(3)以上條件不變,這一家往返的路費共多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點DDEACE

(1)求證:AB=AC;

(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示一輛汽車在行駛途中的速度v(千米/時)隨時間t(分)的變化示意圖:

(1)從點A到點B、點E到點F、點G到點H分別表明汽車在什么狀態(tài)?

(2)分段描述汽車在第0分種到第28分鐘的行駛情況;

(3)汽車在點A的速度是多少?在點C呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校,以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖,根據(jù)圖中提供的信息回答下列問題:

(1)小明家到學(xué)校的路程是______米;

(2)小明在書店停留了______分鐘;

(3)本次上學(xué)途中,小明一共行駛了_____米,一共用了_______分鐘;

(4)在整個上學(xué)的途中________(哪個時間段)小明騎車速度最快,最快的速度是____/分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,上一點,,垂足為,垂足為.下列四三個結(jié)論中:①;②;③;④其中正確的是____________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,A觀測站在B觀測站的正東方向,有一艘小船在點P處,從A處測得小船在北偏西60°方向,從B處測得小船在北偏東45°的方向,點P到點B的距離是3千米.(注:結(jié)果有根號的保留根號)

1)求A,B兩觀測站之間的距離;

2)小船從點P處沿射線AP的方向以千米/時的速度進(jìn)行沿途考察,航行一段時間后到達(dá)點C處,此時,從B測得小船在北偏西15°方向,求小船沿途考察的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整

EFAD,(   

∴∠2=   .(兩直線平行,同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

查看答案和解析>>

同步練習(xí)冊答案