若兩圓的圓心距為5,半徑分別是方程x2-6x+8=0的兩根,則這兩圓的位置關系是:
 
考點:圓與圓的位置關系,解一元二次方程-因式分解法
專題:
分析:由半徑分別是方程x2-6x+8=0的兩根,可求得其半徑的長,然后由圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系得出兩圓位置關系.
解答:解:∵x2-6x+8=0,
∴(x-2)(x-4)=0,
∴x1=2,x2=4,
∵兩圓的半徑分別是方程x2-6x+8=0的兩根,
∴兩圓的半徑為2與4,
∵兩圓的圓心距為5,
∴這兩圓的位置關系是:相交.
故答案為:相交.
點評:此題考查了圓與圓的位置關系以及一元二次方程的求解方法.此題比較簡單,注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,點p在BD上移動,當PB=
 
時,△APB和△CPD相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若a、b互為相反數(shù),c、d互為倒數(shù),m的絕對值為3,則代數(shù)式m2-cd+
a+b
m
的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3(cd)4=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a與b互為相反數(shù),c與d互為倒數(shù),m的絕對值為2,求
|a+b|
m
-cd+m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是圓O的半徑,AC=7,AB=25,點D平分弧BC,則AD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

要使y=(m-2)x|m-1|+3是關于x的一次函數(shù),則m=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

四條線段的長分別為7cm、8cm、10cm、15cm,以其中任意三條線段為邊可以構成
 
個三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算(1)-1-1=
 
,(2)-24=
 
,(3)(-2)4=
 

查看答案和解析>>

同步練習冊答案