【題目】計算:
(1)x2+2x=48
(2)2x2﹣4x﹣5=0
(3)sin60°+cos230°﹣tan45°
(4)﹣3tan60°﹣(﹣1)0+
【答案】(1)x1=﹣8,x2=6;(2)x1=,x2=;(3)﹣;(4)1﹣.
【解析】
(1)整理為一元二次方程的一般式,再利用因式分解法求解可得;
(2)利用公式法求解可得;
(3)先將特殊銳角的三角函數(shù)值代入,再根據(jù)實數(shù)的混合運算順序和運算法則計算可得;
(4)根據(jù)實數(shù)的混合運算順序和運算法則計算可得.
解:(1)∵x2+2x﹣48=0,
∴(x+8)(x﹣6)=0,
則x+8=0或x﹣6=0,
解得x1=﹣8,x2=6;
(2)∵a=2,b=﹣4,c=﹣5,
∴△=(﹣4)2﹣4×2×(﹣5)=56>0,
則,
即x1=,x2=;;
(3)原式=
=﹣;
(4)原式=2﹣3﹣1+2
=1﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人分別從,兩地相向而行,甲先走3分鐘后乙才開始行走,甲到達(dá)地后立即停止,乙到達(dá)地后立即以另一速度返回地,在整個行駛的過程中,兩人保持各自速度勻速行走,甲,乙兩人之間的距離(米)與乙出發(fā)的時間(分鐘)的函數(shù)關(guān)系如圖所示.當(dāng)甲到達(dá)地時,則乙距離地的時間還需要________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸的負(fù)半軸相交于點C(如圖),點C的坐標(biāo)為(0,﹣3),且BO=CO.
(1)求出B點坐標(biāo)和這個二次函數(shù)的解析式;
(2)求△ABC的面積;
(3)設(shè)這個二次函數(shù)的圖象的頂點為M,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則△DEF的面積為( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點.
(1)該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖①中(三角板一邊與CC重合),BN、CN、CD這三條線段之間存在一定的數(shù)量關(guān)系:CN2=BN2+CD2,請你對這名成員在圖①中發(fā)現(xiàn)的結(jié)論說明理由;
(2)在圖③中(三角板一直角邊與OD重合),試探究圖③中BN、CN、CD這三條線段之間的數(shù)量關(guān)系,直接寫出你的結(jié)論.
(3)試探究圖②中BN、CN、CM、DM這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點的直線與反比例函數(shù)的圖象交于兩點,點在第一象限。點在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點。為的平分線,過點作的垂線,垂足為,連結(jié)。若,的面積為6,則的值為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時,水面寬AB為12m.當(dāng)水面上升6m時達(dá)到警戒水位,此時拱橋內(nèi)的水面寬度是多少m?
下面給出了解決這個問題的兩種方法,請補充完整:
方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,
此時點B的坐標(biāo)為( , ),拋物線的頂點坐標(biāo)為( , ),
可求這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y=6時,求出此時自變量x的取值,即可解決這個問題.
方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標(biāo)系xOy,
這時這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y= 時,求出此時自變量x的取值為 ,即可解決這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;將△ABC繞點順時針方向旋轉(zhuǎn)n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,求n的大小和圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com