【題目】《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學(xué)專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》中記載有一問題今有圓材埋在壁中,不知大。凿忎徶,深一寸,鋸道長一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為 1寸,鋸道AB=1(1=10),則該圓材的直徑為(

A.13B.24C.26D.28

【答案】C

【解析】

設(shè)⊙O的半徑為r.利用垂徑定理求得AC=5,在RtACO中,,,則有,解方程即可.

設(shè)圓心為O,過OOCABC,交⊙OD,連接OA,


AC=AB=

設(shè)⊙O的半徑為r,
RtACO中,,
則有,
解得,
∴⊙O的直徑為26寸,
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為4,點分別在邊,上,且,直線與直線交于點,直線交直線于點,連接,

1)如圖1,當時,求證:平分;

2)如圖2,將圖1中的繞點逆時針旋轉(zhuǎn),其他條件不變,(1)的結(jié)論是否成立?說明理由;

3)當是等腰三角形時,直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于點,經(jīng)過,兩點的拋物線軸的負半軸的另一交點為,且

1)求該拋物線的解析式及拋物線頂點的坐標;

2)點是射線上一點,問是否存在以點,為頂點的三角形,與相似,若存在,請求出點的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過線段AB的端點B作射線BGAB,P為射線BG上一點,以AP為邊作正方形APCD,且點C、D與點BAP兩側(cè),在線段DP上取一點E,使∠EAP=∠BAP,直線CE與線段AB相交于點F(點F與點A、B不重合).

1)求證:

2)判斷CFAB的位置關(guān)系,并說明理由;

3)試探究AE+EF+AF2AB是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極宣傳國家相關(guān)政策,某村在一山坡的頂端的平地上豎立一塊宣傳牌.小明為測得宣傳牌的高度,他站在山腳處測得宣傳牌的頂端的仰角為,已知山坡的坡度,山坡的長度為米,山坡頂端與宣傳牌底端的水平距離為2米,求宣傳牌的高度(精確到1米)

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,C是O上一點,ODBC于點D,過點C作O的切線,交OD的延長線于點E,連接BE.

(1)求證:BE與O相切;

(2)設(shè)OE交O于點F,若DF=1,BC=2,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點,BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點在邊上,,點的中點,點為邊上的動點,則使四邊形周長最小的點的坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行

銷售,并將所得利潤捐給慈善機構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y()于銷售單價x(

/)之間的對應(yīng)關(guān)系如圖所示.

(1)試判斷yx之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)若許愿瓶的進價為6/個,按照上述市場調(diào)查銷售規(guī)律,求利潤w()與銷售單價x(/)之間的

函數(shù)關(guān)系式;

(3)若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出

最大利潤.

查看答案和解析>>

同步練習(xí)冊答案