【題目】如圖,拋物線y=mx+2mx-3m(m≠0)的頂點(diǎn)為H,與軸交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線l:對(duì)稱,過(guò)點(diǎn)B作直線BK∥AH交直線l于K點(diǎn).
(1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線I上。
(2)求此拋物線的解析式;
(3)將此拋物線向上平移,當(dāng)拋物線經(jīng)過(guò)K點(diǎn)時(shí),設(shè)頂點(diǎn)為N,求出NK的長(zhǎng).
【答案】(1) A(-3,0) B(1,0) ; (2)y=-x-x+; (3)NK=4
【解析】
(1)令y=0,解關(guān)于x的一元二次方程,即可得到點(diǎn)A、B的坐標(biāo);然后把點(diǎn)A的坐標(biāo)代入直線l的解析式,計(jì)算即可證明點(diǎn)A在直線上;
(2)根據(jù)軸對(duì)稱的性質(zhì)可得AH=AB,根據(jù)直線l的解析式求出直線l與x軸的夾角為30°,然后得到∠HAB的度數(shù)是60°,過(guò)點(diǎn)H作HC⊥x軸于點(diǎn)C,然后解直角三角形求出AC、HC,從而得到OC的長(zhǎng)度,然后寫出點(diǎn)H的坐標(biāo),再把點(diǎn)H的坐標(biāo)代入拋物線解析式計(jì)算求出m的值,即可得解;
(3)根據(jù)平行直線的解析式的k值相等求出直線BK的解析式的k值,然后利用待定系數(shù)法求出直線BK的解析式,與直線l的解析式聯(lián)立求解得到點(diǎn)K的值,再利用拋物線解析式求出相應(yīng)橫坐標(biāo)上的點(diǎn),從而求出拋物線向上移動(dòng)的距離,然后得到平移后的拋物線的頂點(diǎn)N的坐標(biāo),根據(jù)兩點(diǎn)間的距離公式計(jì)算即可得到NK的值.
令y=0,則mx2+2mx-3m=0(m≠0),
解得x1=-3,x2=1,
∵B點(diǎn)在A點(diǎn)右側(cè),
∴A點(diǎn)坐標(biāo)為(-3,0),B點(diǎn)坐標(biāo)為(1,0),
證明:∵直線l:
當(dāng)x=-3時(shí),
∴點(diǎn)A在直線l上;
(2)∵點(diǎn)H、B關(guān)于過(guò)A點(diǎn)的直線l:對(duì)稱,
∴AH=AB=4,
設(shè)直線l與x軸的夾角為α,則
所以,∠α=30°,
∴∠HAB=60°,
過(guò)頂點(diǎn)H作HC⊥AB交AB于C點(diǎn),
則
∴頂點(diǎn)H
代入拋物線解析式,得
解得m=-
所以,拋物線解析式為
(3)∵BK∥AH
∴直線BK的k=tan60°=
設(shè)直線BK的解析式為y=x+b,
∵B點(diǎn)坐標(biāo)為(1,0),
∴+b=0,
解得b=-,
∴直線BK的解析式為y=x-
聯(lián)立
解得
∴點(diǎn)K的坐標(biāo)為(3,2 ),
當(dāng)x=3時(shí),
∴平移后與點(diǎn)K重合的點(diǎn)的坐標(biāo)為(3,-6 ),
平移距離為2-(-6)=8,
∵平移前頂點(diǎn)坐標(biāo)為(-1,2),
2+8=10,
∴平移后頂點(diǎn)坐標(biāo)N(-1,10),
所以,NK的長(zhǎng)是4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形,是動(dòng)點(diǎn),邊長(zhǎng)為4, ,則下列結(jié)論正確的有幾個(gè)( )
①; ②為等邊三角形
③ ④若,則
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備購(gòu)買若干臺(tái)A型電腦和B型打印機(jī).如果購(gòu)買1臺(tái)A型電腦,2臺(tái)B型打印機(jī),一共需要花費(fèi)5900元;如果購(gòu)買2臺(tái)A型電腦,2臺(tái)B型打印機(jī),一共需要花費(fèi)9400元.
(1)求每臺(tái)A型電腦和每臺(tái)B型打印機(jī)的價(jià)格分別是多少元?
(2)如果學(xué)校購(gòu)買A型電腦和B型打印機(jī)的預(yù)算費(fèi)用不超過(guò)20000元,并且購(gòu)買B型打印機(jī)的臺(tái)數(shù)要比購(gòu)買A型電腦的臺(tái)數(shù)多1臺(tái),那么該學(xué)校至多能購(gòu)買多少臺(tái)B型打印機(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中是小明完成的一道作業(yè)題,請(qǐng)你參考小明的解答方法解答下面的問(wèn)題:
小明的作業(yè)
計(jì)算:(-4)7×0.257
解:(-4)7×0.257=(-4×0.25)7
=(-1)7
=-1
(1)計(jì)算①82018×(-0.125)2018②
(2)看2·4n·16n=219 , 求n的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=﹣在第二象限的圖象上有兩點(diǎn)A、B,它們的橫坐標(biāo)分別為﹣1、﹣2,在直線y=x上求一點(diǎn)P,使PA+PB最。畡tP點(diǎn)坐標(biāo)為( 。
A. P(,)B. P(,)C. P(1,1)D. P(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3BC,以點(diǎn)A為圓心,AD為半徑畫弧交AB于點(diǎn)E連接CE,作線段CE的中垂線交AB于點(diǎn)F,連接CF,則sin∠CFB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫出線段BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com