計(jì)算:已知a+b=3,a2+b2=5,求ab的值.

解:∵a+b=3,
∴a2+2ab+b2=9,
∵a2+b2=5,
∴2ab=9-5=4.
解得ab=2.
故答案為:2.
分析:把a(bǔ)+b=3,利用完全平方公式兩邊平方,然后再把a(bǔ)2+b2=5代入計(jì)算即可.
點(diǎn)評(píng):本題考查了完全平方公式,把a(bǔ)+b=3兩邊平方是解題的關(guān)鍵,熟記公式也很重要.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=2,BC=6,則稱矩形ABCD為2階奇異矩形.

(1)判斷與操作:
如圖2,矩形ABCD長(zhǎng)為5,寬為2,它是奇異矩形嗎?如果是,請(qǐng)寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請(qǐng)說(shuō)明理由.
(2)探究與計(jì)算:
已知矩形ABCD的一邊長(zhǎng)為20,另一邊長(zhǎng)為a(a<20),且它是3階奇異矩形,請(qǐng)畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出a的值.
(3)歸納與拓展:
已知矩形ABCD兩鄰邊的長(zhǎng)分別為b,c(b<c),且它是4階奇異矩形,求b:c(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:已知
x-2
+|x2-3y-16|=0,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:已知:A=5x2-3xy-2y2   B=2x2+xy+y2,計(jì)算下列各式:
(1)2A-3B                         
(2)3A+2B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

鄰邊不相等的矩形紙片,剪去一個(gè)正方形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形中減去一個(gè)正方形,又余下一個(gè)四邊形,稱為第二次操作;…,以此類推,若第n次操作后余下的四邊形是正方形,則稱原矩形是n階矩形.如圖1,矩形ABCD中,若AB=1,AD=2,則矩形ABCD是1階矩形.
探究:(1)兩邊分別是2和3的矩形是
2
2
階矩形;
(2)小聰為了剪去一個(gè)正方形,進(jìn)行如下的操作:如圖2,把矩形ABCD沿著BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC的點(diǎn)F處,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是正方形.
(3)操作、計(jì)算:
①已知矩形的兩邊分別是2,a(a>2),而且它是3階矩形,請(qǐng)畫出此矩形及裁剪線的示意圖,并在示意圖下方直接寫出a的值;
②已知矩形的兩鄰邊長(zhǎng)為a,b,(a>b),且滿足a=5b+m,b=4m.請(qǐng)直接寫出矩形是幾階矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

公式探究題
(1)如圖:用兩種方法求陰影的面積:
方法(一)得
(a+b)2-4ab
(a+b)2-4ab

方法(二)得
(a-b)2
(a-b)2

(2)比較方法(一)和方法(二)得到的結(jié)論是
(a+b)2-4ab=(a-b)2
(a+b)2-4ab=(a-b)2
(用式子表達(dá))
(3)利用上述得到的公式進(jìn)行計(jì)算:已知a+b=
7
,a-b=
3
,求ab和a2+b2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案