【題目】如圖,⊙O中,弦ABCDE,若已知AD=9,BC=12,則⊙O的半徑為(

A.5.5B.6C.7.5D.8

【答案】C

【解析】

連接DO并延長DO交圓O于點F,連接BDAF,BF,根據(jù)圓周角登錄得到∠DAE=∠DFB,∠AED=∠FBD90°,根據(jù)三角形的內(nèi)和得到∠ADC=∠FDB,由角的和差得到∠ADF=∠CDB,得到,求得AFBC12,然后由勾股定理即可得到結(jié)論.

連接DO并延長DO交圓O于點F,連接BDAF,BF

∵∠DAE=∠DFB,∠AED=∠FBD90°,

∴∠ADC=∠FDB,

∴∠ADF=∠CDB,

,

AFBC12,

∵∠DAF90°,

DF=15,

∴⊙O的半徑為7.5

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,B=90°,AB=BC,BCMABC的外角,BAC、BCM的平分線交于點D,ADBC交于點E,若BE=2,則AEDE=____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接ED,BE.

(1)求證:△ABD∽△AEB;

(2)當 = 時,求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點F,若AF=2,求⊙C的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB16cm,BC6cm,點P從點A出發(fā)沿AB3cm/s的速度向點B移動(不與點A,B重合);同時點Q從點C出發(fā)沿CD2cm/s的速度向點D移動(不與點C、D重合),經(jīng)過幾秒,△PDQ為直角三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:,其中|x|≤1,且x為整數(shù).

小海同學的解法如下:

解:原式=

=(x12x2+3

x22x1x2+3

=﹣2x+2

x=﹣1時,

原式=﹣(﹣1+2

2+24

請指出他解答過程中的錯誤(寫出相應的序號,多寫不給分),并寫出正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰RtABC中,∠ACB90°,CBCA,在△ABE中,∠AEB90°AEBC交于點F

(1)若∠BAE30°,BF2,求BE的長;

(2)如圖2,DBE延長線上一點,連接ADFD、CD,若ABAD,∠ACD135°,求證:BD+BFAF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一座拋物線形拱橋,正常水位橋下面寬度為米,拱頂距離水平面米,如圖建立直角坐標系,若正常水位時,橋下水深米,為保證過往船只順利航行,橋下水面寬度不得小于米,則當水深超過多少米時,就會影響過往船只的順利航行(  )

A.B.C.D.

查看答案和解析>>

同步練習冊答案