【題目】每年的3月22日為聯(lián)合國確定的“世界水日”,某社區(qū)為了宣傳節(jié)約用水,從本社區(qū)1000戶家庭中隨機抽取部分家庭,調(diào)查他們每月的用水量,并將調(diào)查的結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽樣調(diào)查的樣本容量是
(2)補全頻數(shù)分布直方圖,求扇形圖中“6噸﹣﹣9噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實行加價收費,那么該社會用戶中約有多少戶家庭能夠全部享受基本價格?

【答案】
(1)100
(2)解:6~9噸的戶數(shù)為100﹣(10+38+24+8)=20(戶),

補全頻數(shù)分布直方圖如下:

扇形圖中“6噸﹣﹣9噸”部分的圓心角的度數(shù)為360°× =72°;


(3)解:1000× =680,

答:該社區(qū)約有680戶家庭的用水全部享受基本價格.


【解析】解:(1)此次抽樣調(diào)查的樣本容量是10÷10%=100, 所以答案是:100;
【考點精析】關于本題考查的總體、個體、樣本、樣本容量和頻數(shù)分布直方圖,需要了解所要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本,樣本中個體的數(shù)目叫這個樣本的容量(樣本容量沒有單位);特點:①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(Ⅰ)如圖1,在等邊中,點上的任意一點(不含端點, ),連結(jié),以為邊作等邊,并連結(jié)求證:

(Ⅱ)【類比探究】

如圖2,在等邊中,若點延長線上的任意一點(不含端點),其它條件不變,則是否還成立?若成立,請說明理由;若不成立,請寫出, , 三者間的數(shù)量關系,并給予證明.

(Ⅲ)【拓展延伸】

如圖3,在等腰中, ,點上的任意一點(不含端點),連結(jié),以為邊作等腰,使,試探究的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,CD是⊙O的切線,OD∥BC,OD與半圓O交于點E,則下列結(jié)論中不一定正確的是(
A.AC⊥BC
B.BE平分∠ABC
C.BE∥CD
D.∠D=∠A

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A’B’C.若=40°,=110°,則∠的度數(shù)為( )

A. 30° B. 50° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的北岸邊點A處,測得河的南岸邊點B在其南偏東45°方向,然后向北走20米到達C點,測得點B在點C的南偏東33°方向,求出這段河的寬度(結(jié)果精確到1米,參考數(shù)據(jù)sin33°≈0.54,cos33°≈0.84,tan33°≈0.65, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點E是AB邊的中點,以AE為邊作正方形AEFG,連接DE,BG.

(1)發(fā)現(xiàn)
①線段DE、BG之間的數(shù)量關系是;
②直線DE、BG之間的位置關系是
(2)探究
如圖2,將正方形AEFG繞點A逆時針旋轉(zhuǎn),(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

(3)應用
如圖3,將正方形AEFG繞點A逆時針旋轉(zhuǎn)一周,記直線DE與BG的交點為P,若AB=4,請直接寫出點P到CD所在直線距離的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘數(shù)學家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把第一個三角形數(shù)記為x1 , 第二個三角形數(shù)記為x2 , …第n個三角形數(shù)記為xn , 則xn+xn+1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD上,折痕的一端E點在邊BC上,BE=10.則折痕的長為

查看答案和解析>>

同步練習冊答案