【題目】教科書中這樣寫道:“我們把多項式及叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學方法,可以求代數(shù)式的最大值或最小值等.
例如:求代數(shù)式的最小值.
當時,有最小值,最小值是.
根據(jù)閱讀材料用配方法解決下列問題:
(1)當為何值時,代數(shù)式有最小值,求出這個最小值.
(2)當,為什么關(guān)系時,代數(shù)式有最小值,并求出這個最小值.
(3)當,為何值時,多項式有最大值,并求出這個最大值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AB=6,BC=8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,橋孔拋物線對應(yīng)的二次函數(shù)關(guān)系式是y=﹣x2,當水位上漲1m時,水面寬CD為2m,則橋下的水面寬AB為_____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種小商品的成本價為10元/kg,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(kg)與銷售價x(元/kg)有如下關(guān)系w=﹣2x+100,設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工人小王生產(chǎn)甲、乙兩種產(chǎn)品,生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系如表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘?
(2)小王每天工作8個小時,每月工作25天.如果小王四月份生產(chǎn)甲種產(chǎn)品a件(a為正整數(shù)).
①用含a的代數(shù)式表示小王四月份生產(chǎn)乙種產(chǎn)品的件數(shù);
②已知每生產(chǎn)一件甲產(chǎn)品可得1.50元,每生產(chǎn)一件乙種產(chǎn)品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC的延長線于F,且垂足為E,則下列結(jié)論:①AD=BF;②BF=AF;③AC+CD=AB;④AB=BF;⑤AD=2BE,其中正確的結(jié)論有( )個.
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com