【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點,則y1<y2其中結論正確的是( )

A.①②
B.②③
C.②④
D.①③④

【答案】C
【解析】解:∵拋物線開口向下,

∴a<0,

∵拋物線的對稱軸為直線x=﹣ =1,

∴b=﹣2a>0,

∵拋物線與y軸的交點在x軸上方,

∴c>0,

∴abc<0,所以①錯誤;

∵b=﹣2a,

∴2a+b=0,所以②正確;

∵拋物線與x軸的一個交點為(﹣1,0),拋物線的對稱軸為直線x=1,

∴拋物線與x軸的另一個交點為(3,0),

∴當x=2時,y>0,

∴4a+2b+c>0,所以③錯誤;

∵點(﹣ )到對稱軸的距離比點( )對稱軸的距離遠,

∴y1<y2,所以④正確.

所以答案是:C.

【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識可以得到問題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列內容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為: n(n﹣3).
如果一個n邊形共有20條對角線,那么可以得到方程
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.
∴n=8,即多邊形是八邊形.
根據(jù)以上內容,問:
(1)若一個多邊形共有14條對角線,求這個多邊形的邊數(shù);
(2)A同學說:“我求得一個多邊形共有10條對角線”,你認為A同學說法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人在一環(huán)形場地上鍛煉,甲騎自行車,乙跑步,甲比乙每分鐘快200m,兩人同時從起點同向出發(fā),經(jīng)過3min兩人首次相遇,此時乙還需跑150m才能跑完第一圈.

求甲、乙兩人的速度分別是每分鐘多少米?列方程或者方程組解答

若兩人相遇后,甲立即以每分鐘300m的速度掉頭向反方向騎車,乙仍按原方向繼續(xù)跑,要想不超過兩人再次相遇,則乙的速度至少要提高每分鐘多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:cos30° +|1﹣ |﹣( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB,交CD于點E,交BC于點F,若AF=BF,求證:△CEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著我國人口增長速度的減慢,小學入學兒童數(shù)量有所減少.下表中的數(shù)據(jù)近似地呈現(xiàn)了某地區(qū)入學兒童人數(shù)的變化趨勢:

(1)上表中_____是自變量,_____是因變量.

(2)你預計該地區(qū)從_____年起入學兒童的人數(shù)不超過1 000.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子中裝有四張完全相同的卡片,分別寫著2cm,3cm,4cm和5cm,盒子外有兩張卡片,分別寫著3cm和5cm,現(xiàn)隨機從盒中取出一張卡片,與盒子外的兩張卡片放在一起,以卡片上的數(shù)量分別作為三條線段的長度,那么這三條線段能構成三角形的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(4,0)及在第一象限的動點P(x,y),且x+y=5,0為坐標原點,設△OPA的面積為S.

(1)求S關于x的函數(shù)表達式;

(2)求x的取值范圍;

(3)當S=4時,求P點的坐標.

查看答案和解析>>

同步練習冊答案