【題目】國(guó)貿(mào)商店服裝柜在銷售中發(fā)現(xiàn):“寶樂牌”童裝平均每天可以售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫(kù)存.經(jīng)調(diào)查發(fā)現(xiàn):每件童裝每降價(jià)1元,商場(chǎng)平均每天可多銷售2件.
(1)若每件童裝降價(jià)5元,則商場(chǎng)盈利多少元?
(2)若商場(chǎng)每天要想盈利1200元,請(qǐng)你幫助商場(chǎng)算一算,每件童裝應(yīng)降價(jià)多少元?
【答案】(1)若每件童裝降價(jià)5元,則商場(chǎng)每天盈利1050元;(2)20元.
【解析】
(1)降價(jià)5元?jiǎng)t每件盈利變?yōu)?/span>40-5=35元,銷量增加5×2=10件,然后用單件利潤(rùn)乘以銷量可得總盈利;
(2)設(shè)每件童裝降價(jià)x元,則每件盈利為(40-x)元,每天售出元,根據(jù)單件利潤(rùn)乘以銷量等于總盈利建立方程求解.
解:(1)(元).
答:若每件童裝降價(jià)5元,則商場(chǎng)每天盈利1050元.
(2)設(shè)每件童裝降價(jià)x元,則每天售出元,
依題意,得:,
整理,得:,
解得:,.
∵盡快減少庫(kù)存,
∴.
答:每件童裝應(yīng)降價(jià)20元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水渠的橫截面呈拋物線,水面的寬度為AB(單位:米),現(xiàn)以AB所在直線為x軸,以拋物線的對(duì)稱軸為y軸建立如圖所示的平面直角坐標(biāo)系,設(shè)坐標(biāo)原點(diǎn)為O.已知AB=8米,設(shè)拋物線解析式為y=ax2﹣4.
(1)求a的值;
(2)點(diǎn)C(﹣1,m)是拋物線上一點(diǎn),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)D,連接CD,BC,BD,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上.將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計(jì)算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.
(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾分類”越來越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就“垃圾分類”知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,條形統(tǒng)計(jì)圖中的值為 ;
(2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;
(3)若從對(duì)垃圾分類知識(shí)達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加垃圾分類知識(shí)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 0 | p | m | 3 | q | 0 | … |
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)表格中字母m= ;(直接寫出答案)
(3)在給定的直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;
(4)以上二次函數(shù)的圖象與x軸圍成的封閉區(qū)域內(nèi)(不包括邊界),橫、縱坐標(biāo)都是整數(shù)的點(diǎn)共有 個(gè).(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C'D',邊B'C'交CD于點(diǎn)E.若正方形ABCD的邊長(zhǎng)為3,則DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,分別過點(diǎn)C、D作CF∥BD,DF∥AC,連接BF交AC于點(diǎn)E.
(1)求證:△FCE≌△BOE;
(2)當(dāng)△ADC滿足什么條件時(shí),四邊形OCFD為菱形?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com