【題目】計算

112﹣(﹣18+(﹣7).

23+(﹣2+5+(﹣8).

3)(﹣×(﹣+(﹣×).

4)(﹣×(﹣1÷(﹣2).

542×(﹣+(﹣÷(﹣0.25).

6)(﹣110×3+(﹣23÷4145×0

【答案】123;(2)﹣2;(3)﹣6;(4;(5)﹣25;(61

【解析】

分別根據(jù)有理數(shù)的加、減、乘、除法進行計算,有乘方的先算乘方,再算乘除,最后算加減法.

112﹣(﹣18+(﹣7

12+18+(﹣7

23;

2

9+(﹣11)

=﹣2;

3

=﹣6;

4

;

5

=﹣28+3

=﹣25;

6)(﹣110×3+(﹣23÷4145×0

1×3+(﹣8÷40

3+(﹣2)﹣0

1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,BC,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學生?

2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?

4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小華先后從甲地出發(fā)到乙地,小明先乘坐客車出發(fā)1小時,小華才開車前住乙地,小華到達乙地后立即按原速從乙地返回甲地。已知小明、小華離甲地距離y(千米)與小明出發(fā)時間x(小時)之間的函數(shù)關(guān)系如圖所示,請根據(jù)圖象解答下列問題:小華從乙地返回后再經(jīng)過___小時與小明相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜薹共用去16萬元.

(1)求兩批次購進蒜薹各多少噸;

(2)公司收購后對蒜薹進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).

(1)此時小強頭部E點與地面DK相距多少?

(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,點A1,B1,C1分別是BC、AC、AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點,依此類推.若△ABC的周長為1,則△AnBnCn的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學學習中,及時對知識進行歸納和整理是提高學習效率的重要方法,善于學習的小明在學習了一次方程(組)、一元一次不等式和一次函數(shù)后,對照圖形,把相關(guān)知識歸納整理如下:

一次函數(shù)與方程(組)的關(guān)系:

1)一次函數(shù)的解析式就是一個二元一次方程;

2)點B的橫坐標是方程kx+b=0的解;

3)點C的坐標(x,y)中xy的值是方程組①的解.

一次函數(shù)與不等式的關(guān)系:

1)函數(shù)y=kx+b的函數(shù)值y大于0時,自變量x的取值范圍就是不等式kx+b0的解集;

2)函數(shù)y=kx+b的函數(shù)值y小于0時,自變量x的取值范圍就是不等式②的解集.

(一)請你根據(jù)以上歸納整理的內(nèi)容在下面的數(shù)字序號后寫出相應的結(jié)論:① ;② ;

(二)如果點B坐標為(2,0),C坐標為(1,3);

①直接寫出kx+b≥k1x+b1的解集;

②求直線BC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB20°,∠AOC4AOB,OD平分∠AOB,OM平分∠AOC,則∠MOD的度數(shù)是_____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1ADBCBEAC,

∴∠ADB=AEF=90°

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC;

2NE=AC,理由是:

如圖2,由折疊得:MD=DC

DEAM,

AE=EC,

BEAC,

AB=BC,

∴∠ABE=CBE,

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM,

∴△BDF≌△ADM

∴∠DBF=MAD,

∵∠DBA=BAD=45°,

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE,

NAE=2NAD=2CBE,

∴∠ANE=NAE=45°,

AE=EN,

EN=AC

型】解答
結(jié)束】
17

【題目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的兩根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.

查看答案和解析>>

同步練習冊答案