【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長(zhǎng)度.
【答案】(1)證明見解析;(2)6.
【解析】
試題分析:(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,從而得到DE=EF,DG∥EF,再利用一組對(duì)邊平行且相等的四邊形是平行四邊形證明即可;
(2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線等于斜邊的一半,求出EF即可.
試題解析:(1)∵D、G分別是AB、AC的中點(diǎn),∴DG∥BC,DG=BC,∵E、F分別是OB、OC的中點(diǎn),∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四邊形DEFG是平行四邊形;
(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M(jìn)為EF的中點(diǎn),OM=3,∴EF=2OM=6.
由(1)有四邊形DEFG是平行四邊形,∴DG=EF=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點(diǎn)A的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( 。
A. (﹣5,4)B. (4,3)C. (﹣1,﹣2)D. (﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)直角三角形的兩邊長(zhǎng)分別為5、12,則這個(gè)直角三角形第三邊長(zhǎng)的平方為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x2﹣9x+18=0的兩個(gè)根是等腰三角形的底和腰,則這個(gè)三角形的周長(zhǎng)為( )
A.12
B.12或15
C.15
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F,G,H分別為邊AB,BC,CD,DA的中點(diǎn).
求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F,G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AD、BC的中點(diǎn),對(duì)角線AC分別交BE,DF于點(diǎn)G、H.求證:AG=CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今,優(yōu)學(xué)派電子書包通過將信息技術(shù)與傳統(tǒng)教學(xué)深度結(jié)合,讓智能科技在現(xiàn)代教育中發(fā)揮了重要作用。某優(yōu)學(xué)派公司籌集資金12.8萬(wàn)元,一次性購(gòu)進(jìn)兩種新型電子書包訪問智能終端:平板電腦和PC機(jī)共30臺(tái).根據(jù)市場(chǎng)需要,這些平板電腦、PC機(jī)可以全部銷售,全部銷售后利潤(rùn)不少于1.5萬(wàn)元,其中平板電腦、PC機(jī)的進(jìn)價(jià)和售價(jià)見如下表格:
設(shè)該公司計(jì)劃購(gòu)進(jìn)平板電腦x臺(tái),平板電腦和PC機(jī)全部銷售后該公司獲得的利潤(rùn)為y元.
(1) 試寫出y與x的函數(shù)關(guān)系式;
(2) 該公司有哪幾種進(jìn)貨方案可供選擇?請(qǐng)寫出具體方案;
(3) 選擇哪種進(jìn)貨方案,該公司獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com