【題目】計算:

(1);

(2);

(3);

(4);

(5)(2;

(6);

(7)()();

(8);

(9);

(10)

【答案】(1)4;(2)36;(3)1;(4)3;(5)8+4;(6)1;(7)-1;(8);(9)4+;(10)6.

【解析】

(1)直接利用(a0,b0)計算可得答案;

(2)直接利用(a0,b0)計算可得答案;

(3)直接利用(a0,b0)計算再相減可得答案;

(4)先化簡二次根式后計算除法可得答案;

(5)利用完全平方公式將原式展開后可得答案;

(6) 先化簡二次根式后合并同類項后相除可得答案;

(7) 利用平方差公式將原式展開后可得答案;

(8)先化簡二次根式后合并同類項后可得答案;

(9)先計算開平方開立方運算后相加減可得答案;

解:(1)=4;

(2)

(3)

=6﹣5

=1;

(4)

=3;

(5);

=2+2××+6

=8+4;

(6)

=1;

(7)

=5﹣6

=﹣1;

(8)

=2--

-;

(9)

=4﹣+2

=4+;

(10)

=9﹣3+

=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為13,以CD為斜邊向外作Rt△CDE.若點A到CE的距離為17,則CE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小孟同學(xué)將等腰直角三角板ABCACBC)的直角頂點C放在一直線m上,將三角板繞C點旋轉(zhuǎn),分別過AB兩點向這條直線作垂線AD,BE,垂足為D,E

(1)如圖1,當(dāng)點AB都在直線m上方時,猜想ADBE,DE的數(shù)量關(guān)系是   

(2)將三角板ABCC點按逆時針方向旋轉(zhuǎn)至圖2的位置時,點A在直線m上方,點B在直線m下方.(1)中的結(jié)論成立嗎?請你寫出AD,BE,DE的數(shù)量關(guān)系,并證明你的結(jié)論.

(3)將三角板ABC繼續(xù)繞C點逆時針旋轉(zhuǎn),當(dāng)點A在直線m的下方,點B在直線m的上方時,請你畫出示意圖,按題意標(biāo)好字母,直接寫出AD,BEDE的數(shù)量關(guān)系結(jié)論   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)如圖所示,在四邊形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )
A.數(shù)據(jù)4、5、5、6、0的平均數(shù)是5
B.數(shù)據(jù)2、3、4、2、3的眾數(shù)是2
C.了解某班同學(xué)的身高情況適合全面調(diào)查
D.甲、乙兩組數(shù)據(jù)的平均數(shù)相同,方差分別是S2=3.2,S2=2.9,則甲組數(shù)據(jù)更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:|﹣2|﹣( ﹣π)0+tan45°+( ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校擬派一名跳高運動員參加校際比賽,對甲、乙兩名同學(xué)進行了8次跳高選拔比賽,他們的原始成績(單位:cm)如下表:

學(xué)生/成績/次數(shù)

1

2

3

4

5

6

7

8

169

165

168

169

172

173

169

167

161

174

172

162

163

172

172

176

兩名同學(xué)的8次跳高成績數(shù)據(jù)分析如下表:

學(xué)生/成績/名稱

平均數(shù)(單位:cm

中位數(shù)(單位:cm

眾數(shù)(單位:cm

方差(單位:cm2

a

b

c

5.75

169

172

172

31.25

根據(jù)圖表信息回答下列問題:

1a   ,b   ,c   

2)這兩名同學(xué)中,   的成績更為穩(wěn)定;(填甲或乙)

3)若預(yù)測跳高165就可能獲得冠軍,該校為了獲取跳高比賽冠軍,你認為應(yīng)該選擇   同學(xué)參賽,理由是:   ;

4)若預(yù)測跳高170方可奪得冠軍,該校為了獲取跳高比賽冠軍,你認為應(yīng)該選擇   同學(xué)參賽,班由是:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且AD=CD,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地方政府決定在相距50kmA、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DAABA,CBABB,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?

查看答案和解析>>

同步練習(xí)冊答案