【題目】一元二次方程(x-3)(x-5)=0的兩根分別為( )
A.3 , -5B.-3,-5C.-3 , 5D.3 ,5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D可以把原正方形分割成一些互相不重疊的三角形.
(1)填寫下表
(2)原正方形能否被分割成2016個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×8網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)已知點(diǎn)A在第四象限,且到x軸距離為1,到y(tǒng)軸距離為5,求點(diǎn)A的坐標(biāo);
(2)在(1)的條件下,已知點(diǎn)B(a+1,﹣2a+10),且點(diǎn)B在第一、三象限的角平分線上,判斷△OAB的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:
方案一:從包裝盒加工廠直接購(gòu)買,購(gòu)買所需的費(fèi)y1與包裝盒數(shù)x滿足如圖1所示的函數(shù)關(guān)系.
方案二:租賃機(jī)器自己加工,所需費(fèi)用y2(包括租賃機(jī)器的費(fèi)用和生產(chǎn)包裝盒的費(fèi)用)與包裝盒數(shù)x滿足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問(wèn)題:
(1)方案一中每個(gè)包裝盒的價(jià)格是多少元?
(2)方案二中租賃機(jī)器的費(fèi)用是多少元?生產(chǎn)一個(gè)包裝盒的費(fèi)用是多少元?
(3)請(qǐng)分別求出y1、y2與x的函數(shù)關(guān)系式.
(4)如果你是決策者,你認(rèn)為應(yīng)該選擇哪種方案更省錢?并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)圖②中的陰影部分的正方形邊長(zhǎng)為 ;
(2)觀察圖②,三個(gè)代數(shù)式之間的等量關(guān)系是
;
(3)觀察圖③,你能得到怎樣的代數(shù)恒等式呢?;
(4)試畫出一個(gè)幾何圖形,使它的面積能表示.(畫在虛線框內(nèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列表格的對(duì)應(yīng)值,判斷ax2+bx+c=0 (a≠0,a,b,c為常數(shù))的一個(gè)解x的取值范圍是_____
x | 3.23 | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:如圖(一),△ABC的周長(zhǎng)為,內(nèi)切圓O的半徑為r,連結(jié)OA、OB、OC,△ABC被劃分為三個(gè)小三角形,用S△ABC表示△ABC的面積
∵ S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=,S△OBC=,S△OCA =
∴S△ABC=++= (可作為三角形內(nèi)切圓半徑公式)
(1)理解與應(yīng)用:利用公式計(jì)算邊長(zhǎng)分為5、12、13的三角形內(nèi)切圓半徑;
(2)類比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長(zhǎng)分別為a、b、c、d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長(zhǎng)分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上一點(diǎn) A,一只螞蟻從 A 出發(fā)爬了 4 個(gè)單位長(zhǎng)度到了原點(diǎn),則點(diǎn) A 所表 示的數(shù)是( )
A. 4 B. ﹣4 C. ±8 D. ±4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com