【題目】為貫徹黨的“綠水青山就是金山銀山”的理念,我市計劃購買甲、乙兩種樹苗共7000株用于城市綠化,甲種樹苗每株24元,一種樹苗每株30元相關資料表明:甲、乙兩種樹苗的成活率分別為、.
若購買這兩種樹苗共用去180000元,則甲、乙兩種樹苗各購買多少株?
若要使這批樹苗的總成活率不低于,則甲種樹苗至多購買多少株?
在的條件下,應如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.
科目:初中數學 來源: 題型:
【題目】△ABC的三邊為a、b、c,由下列條件不能判斷它是直角三角形的是( 。
A. ∠A: ∠B: ∠C =3∶4∶5 B. ∠A=∠B+∠C
C. a2=(b+c)(b-c) D. a:b:c =1∶2∶
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象與x軸交點為A(﹣3,0),與y軸交點為B,且與正比例函數y=x的圖象交于點C(m,4).
(1)求m的值及一次函數y=kx+b的表達式;
(2)觀察函數圖象,直接寫出關于x的不等式x<kx+b的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,現有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結論中錯誤的是( 。
A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀并理解下面的證明過程,并在每步后的括號內填寫該步推理的依據.
已知:如圖,AM,BN,CP是△ABC的三條角平分線.
求證:AM、BN、CP交于一點.
證明:如圖,設AM,BN交于點O,過點O分別作OD⊥BC,OF⊥AB,垂足分別為點D,E,F.
∵O是∠BAC角平分線AM上的一點( ),
∴OE=OF( ).
同理,OD=OF.
∴OD=OE( ).
∵CP是∠ACB的平分線( ),
∴O在CP上( ).
因此,AM,BN,CP交于一點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com