【題目】化簡下列各式
(1)a+[2a﹣2﹣(4﹣2a)]
(2)x﹣(2x﹣y2)+(﹣)
(3)3x2+[2x﹣(﹣5x2+4x)+2]﹣1
(4)(﹣3ax2﹣ax+3)﹣(﹣ax2﹣ax﹣1)
【答案】(1)5a﹣6;(2)y2﹣3x;(3)8x2﹣2x+1;(4)ax+2.
【解析】
試題分析:(1)先去小括號(hào),再去中括號(hào),然后合并同類項(xiàng)即可;
(2)先去括號(hào),再合并同類項(xiàng)即可;
(3)先去小括號(hào),再去中括號(hào),然后合并同類項(xiàng)即可;
(4)先去括號(hào),再合并同類項(xiàng)即可.
解:(1)a+[2a﹣2﹣(4﹣2a)]
=a+[2a﹣2﹣4+2a]
=a+2a﹣2﹣4+2a
=5a﹣6;
(2)x﹣(2x﹣y2)+(﹣)
=x﹣2x+y2﹣
=y2﹣3x;
(3)3x2+[2x﹣(﹣5x2+4x)+2]﹣1
=3x2+[2x+5x2﹣4x+2]﹣1
=3x2+2x+5x2﹣4x+2﹣1
=8x2﹣2x+1;
(4)(﹣3ax2﹣ax+3)﹣(﹣ax2﹣ax﹣1)
=﹣ax2﹣ax+1+ax2+ax+1
=ax+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三個(gè)互不相等的有理數(shù),既可表示為1,a+b,a的形式,又可表示為0,,b,的形式,則a1992+b1993= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣2x+3的圖象不經(jīng)過的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一幅美麗的圖案,在其頂點(diǎn)處由四個(gè)正多邊形鑲嵌而成,其中三個(gè)分別為正三角形、正四邊形、正六邊形,則另一個(gè)為()
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列推理正確的是( )
A.∵a // d, b // c,∴c // d
B.∵ a // c,b // d,∴ c // d
C.∵ a // b,a // c,∴ b // c
D.∵ a // b,c // d,∴ a // c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=2,∠A=60°,以AB為直徑的⊙O過點(diǎn)D,點(diǎn)M是BC邊上一點(diǎn)(點(diǎn)M不與B,C重合),過點(diǎn)M作BC的垂線MN,交CD邊于點(diǎn)N.
(1)求AD的長;
(2)當(dāng)點(diǎn)N在⊙O上時(shí),求證:直線MN是⊙O的切線;
(3)以CN為直徑作⊙P,設(shè)BM=x,⊙P的直徑為y,
①求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
②當(dāng)BM為何值時(shí),⊙P與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)
(2)(﹣7)×(﹣5)﹣90÷(﹣15)
(3)(﹣+)×(﹣36)
(4)2÷(﹣)×÷(﹣)
(5)﹣24+(4﹣9)2﹣5×(﹣1)6
(6)用簡便方法計(jì)算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+4在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A(﹣1,0),B,P是其對稱軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,得出以下結(jié)論:
①2a+b=0,
②x=3是方程ax2+bx+4=0的一個(gè)根,
③△PAB周長的最小值是5+,
④9a+4<3b.
其中正確的是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com