【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥底面ABCD,PA=1,點M是棱PC上的一點,且AM⊥PB.
(1)求三棱錐C﹣PBD的體積;
(2)證明:AM⊥平面PBD.
科目:高中數學 來源: 題型:
【題目】設是圓上的任意一點,是過點且與軸垂直的直線,是直線與軸的交點,點在直線上,且滿足.當點在圓上運動時,記點的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,過的直線交曲線于兩點,交直線于點.判定直線的斜率是否依次構成等差數列?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某輪船公司年初以200萬元購進一艘輪船,以每年40萬元的價格出租給海運公司.輪船公司負責輪船的維護,第一年維護費為4萬元,隨著輪船的使用與磨損,以后每年的維護費比上一年多2萬元,同時該輪船第年末可以以萬元的價格出售.
(1)寫出輪船公司到第年末所得總利潤萬元關于的函數解析式,并求的最大值;
(2)為使輪船公司年平均利潤最大,輪船公司應在第幾年末出售輪船?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面立角坐標系中,過點的圓的圓心在軸上,且與過原點傾斜角為的直線相切.
(1)求圓的標準方程;
(2)點在直線上,過點作圓的切線、,切點分別為、,求經過、、、四點的圓所過的定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓:的離心率為,且過點.
(1)求橢圓的方程;
(2)設點,點在軸上,過點的直線交橢圓交于,兩點.
①若直線的斜率為,且,求點的坐標;
②設直線,,的斜率分別為,,,是否存在定點,使得恒成立?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定數列,若滿足且,對于任意的n,,都有,則稱數列為“指數型數列”.
Ⅰ已知數列,的通項公式分別為,,試判斷,是不是“指數型數列”;
Ⅱ若數列滿足:,,判斷數列是否為“指數型數列”,若是給出證明,若不是說明理由;
Ⅲ若數列是“指數型數列”,且,證明:數列中任意三項都不能構成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個平面后,某學生得出下列四個結論:
①BD⊥AC;
②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐;
④平面ADC⊥平面ABC.
其中正確的是( )
A.①②④B.①②③
C.②③④D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設相互垂直的直線,分別過橢圓的左、右焦點,,且與橢圓的交點分別為、和、.
(1)當的傾斜角為時,求以為直徑的圓的標準方程;
(2)問是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com