如圖所示,梯形ABCD中,AB∥DC,AB⊥BC,AB=2,CD=4,以BC上一點(diǎn)O為圓心經(jīng)過(guò)A,D兩點(diǎn),∠AOD=90°,求O到AD的距離.

【答案】分析:首先根據(jù)AAS證明△ABO≌△CDO,則有OB=CD=4;再根據(jù)勾股定理求得OA.根據(jù)已知條件可以發(fā)現(xiàn)三角形AOD是等腰直角三角形,再進(jìn)一步計(jì)算.
解答:解:∵∠AOB+∠OAB=90°,∠AOB+∠DOC=90°,
∴∠OAB=∠DOC,
在△ABO與△OCD中,

∴△ABO≌△OCD,
∴OB=CD=4.
根據(jù)勾股定理得OA==2,AD===2
過(guò)O作OF⊥AD,垂足為F.
△AOD是等腰直角三角形,所以O(shè)F=AD=,即O到AD距離為
點(diǎn)評(píng):綜合運(yùn)用全等三角形的判定和性質(zhì),熟練運(yùn)用勾股定理進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,BD,CE分別為∠ABC,∠ACB的平分線.
求證:四邊形EBCD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖所示,梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=BC=4
3
,求梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,DE∥BC,△ADE和梯形DBCE的面積相等,則AD:DB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解

(1)如圖①,△ABC中,D是BC中點(diǎn),連接AD,直接回答S△ABD與S△ADC相等嗎?
相等
相等
(S表示面積);
應(yīng)用拓展
(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE、EC,試?yán)蒙项}得到的結(jié)論說(shuō)明S△DEC=S△ADE+S△EBC
解決問(wèn)題
(3)現(xiàn)有一塊如圖③所示的梯形試驗(yàn)田,想種兩種農(nóng)作物做對(duì)比實(shí)驗(yàn),用一條過(guò)D點(diǎn)的直線,將這塊試驗(yàn)田分割成面積相等的兩塊,畫(huà)出這條直線,并簡(jiǎn)單說(shuō)明另一點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,直角梯形ABCD中,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),由B-C-D-A沿梯形的邊運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,函數(shù)圖象如圖②所示,則△ABC面積為
16
16

查看答案和解析>>

同步練習(xí)冊(cè)答案