【題目】如圖,四邊形ABCD 中,AB=AD,點(diǎn)B關(guān)于AC的對稱點(diǎn)B恰好落在CD上,若∠BAD=,則ACB的度數(shù)為( 。

A. α B. 90°-α C. 45° D. α-45°

【答案】B

【解析】

連接AB',BB',AAECDE依據(jù)∠BAC=B'AC,DAE=B'AE,即可得出∠CAE=BAD=再根據(jù)四邊形內(nèi)角和以及三角形外角性質(zhì),即可得到∠ACB=ACB'=90°﹣

如圖連接AB',BB',AAECDE

∵點(diǎn)B關(guān)于AC的對稱點(diǎn)B'恰好落在CD,AC垂直平分BB',AB=AB',∴∠BAC=B'AC

AB=ADAD=AB'.

又∵AECD,∴∠DAE=B'AE∴∠CAE=BAD=

又∵∠AEB'=AOB'=90°,∴四邊形AOB'EEB'O=180°﹣,∴∠ACB'=EB'OCOB'=180°﹣90°=90°﹣,∴∠ACB=ACB'=90°﹣

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結(jié)果精確到米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩名同學(xué)在同一個學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時間(min)之間的函數(shù)關(guān)系圖象B表示B同學(xué)離家的路程B(m)與行走時間(min)之間的函數(shù)關(guān)系圖象.

(1)A,B兩名同學(xué)的家相距________m.

(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,修理自行車所用的時間是 _____min.

(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.

(4)求出A同學(xué)離B同學(xué)家的路程A與時間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,∠ADC=45°,把△ADC沿著直線AD對折,點(diǎn)C落在點(diǎn)E的位置.如果BC=6,那么線段BE的長度為( )
A.6
B.6
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有3個正方形如圖所示放置,陰影部分的面積依次記為S1 , S2 , 則S1:S2等于( )

A.1:
B.1:2
C.2:3
D.4:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從分別標(biāo)有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒有明顯差別的卡片中,隨機(jī)抽取一張,所抽卡片上的數(shù)的絕對值不小于2的概率是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點(diǎn)D,BD的延長線交AC于點(diǎn)E.

(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案