【題目】觀察下列一組圖形中點(diǎn)的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),…,按此規(guī)律第6個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( 。

A.46B.63C.64D.73

【答案】C

【解析】

由圖可知:其中第1個(gè)圖中共有1+1×3=4個(gè)點(diǎn),第2個(gè)圖中共有1+1×3+2×3=10個(gè)點(diǎn),第3個(gè)圖中共有1+1×3+2×3+3×3=19個(gè)點(diǎn),…,由此規(guī)律得出第n個(gè)圖有1+1×3+2×3+3×3+…+3n個(gè)點(diǎn).

解:第1個(gè)圖中共有1+1×3=4個(gè)點(diǎn),

2個(gè)圖中共有1+1×3+2×3=10個(gè)點(diǎn),

3個(gè)圖中共有1+1×3+2×3+3×3=19個(gè)點(diǎn),

n個(gè)圖有1+1×3+2×3+3×3+…+3n個(gè)點(diǎn).

所以第6個(gè)圖中共有點(diǎn)的個(gè)數(shù)是1+1×3+2×3+3×3+4×3+5×3+6×3=64.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為箏形.

(1)寫(xiě)出箏形的兩個(gè)性質(zhì)(定義除外)

;②

(2)如圖(2),在平行四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,且AE=AF,∠AEC=AFC.求證:四邊形AECF是箏形.

(3)如圖(3),在箏形ABCD中,AB=AD=26BC=DC=25,AC=17,求箏形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(模型建立)

1)如圖1,等腰RtABC中,∠ACB90°,CBCA,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)AADED于點(diǎn)D,過(guò)點(diǎn)BBEED于點(diǎn)E,求證:△BEC≌△CDA;

(模型應(yīng)用)

2)如圖2,已知直線l1yx+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線l2;求直線l2的函數(shù)表達(dá)式;

3)如圖3,平面直角坐標(biāo)系內(nèi)有一點(diǎn)B3,﹣4),過(guò)點(diǎn)BBAx軸于點(diǎn)A、BCy軸于點(diǎn)C,點(diǎn)P是線段AB上的動(dòng)點(diǎn),點(diǎn)D是直線y=﹣2x+1上的動(dòng)點(diǎn)且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點(diǎn)D的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的AB兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長(zhǎng)線上的點(diǎn),連結(jié)EF,分別交AD、BC于點(diǎn)G、H.若∠1=2,A=C,試說(shuō)明ADBCABCD.

請(qǐng)完成下面的推理過(guò)程,并填空(理由或數(shù)學(xué)式):

∵∠1=2(   

1=AGH(   

∴∠2=AGH(   

ADBC(   

∴∠ADE=C(   

∵∠A=C(   

∴∠ADE=A

ABCD(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCF中,∠ABC=60°,延長(zhǎng)BA至點(diǎn)D,延長(zhǎng)CB至點(diǎn)E,使BE=AD,連結(jié)CD,EA,延長(zhǎng)EACD于點(diǎn)G

1)求證:ACE≌△CBD;

2)求∠CGE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張背面相同的紙牌A,B,C,D,其正面分別劃有四個(gè)不同的幾何圖形(如圖).小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張.

1)用樹(shù)狀圖(或列表法)表示兩次模牌所有可能出現(xiàn)的結(jié)果(紙牌可用AB、C、D表示);

2)求摸出兩張牌面圖形既是中心對(duì)稱圖形又是軸對(duì)稱圖形的紙牌的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD,直線l與直線ABCD相交于點(diǎn)E,F,點(diǎn)P是射線EA上的一個(gè)動(dòng)點(diǎn)(不包括端點(diǎn)E),將△EPF沿PF折疊,使頂點(diǎn)E落在點(diǎn)Q處.

⑴若∠PEF48°,點(diǎn)Q恰好落在其中的一條平行線上,則∠EFP的度數(shù)為

⑵若∠PEF75°,∠CFQPFC,求∠EFP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列平面圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案