【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設(shè)該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是( 。

A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000

C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000

【答案】B

【解析】

增長(zhǎng)率問題是近幾年中考的熱點(diǎn)題型,只有掌握增長(zhǎng)率問題的本質(zhì)內(nèi)涵,才能在中考時(shí)以不變應(yīng)萬變。增長(zhǎng)率實(shí)質(zhì)是;增加量占起始量的百分比,增加量是終極量減去起始量。若這種藥品的年平均下降率為x,根據(jù)兩年前生產(chǎn)1噸某藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸藥品的成本是3600元可列方程.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,的直徑,上一點(diǎn),和過點(diǎn)的切線互相垂直,垂足為點(diǎn)

如圖,求證:平分;

如圖,直線的延長(zhǎng)線交于點(diǎn),的平分線交于點(diǎn),于點(diǎn),求證:;

的條件下,如圖,若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對(duì)稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?

(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(x,y),當(dāng)x<0時(shí),點(diǎn)P的變換點(diǎn)P′的坐標(biāo)為(﹣x,y);當(dāng)x≥0時(shí),點(diǎn)P的變換點(diǎn)P′的坐標(biāo)為(﹣y,x).

(1)若點(diǎn)A(2,1)的變換點(diǎn)A′在反比例函數(shù)y=的圖象上,則k=   

(2)若點(diǎn)B(2,4)和它的變換點(diǎn)B'在直線y=ax+b上,則這條直線對(duì)應(yīng)的函數(shù)關(guān)系式為   ,BOB′的大小是   度.

(3)點(diǎn)P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對(duì)角線作正方形PMP'N,設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對(duì)角線垂直于x軸時(shí),求m的取值范圍.

(4)拋物線y=(x﹣2)2+nx軸交于點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為E,點(diǎn)P在該拋物線上.若點(diǎn)P的變換點(diǎn)P′在拋物線的對(duì)稱軸上,且四邊形ECP′D是菱形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,∠ACB=90°,AC=BC=4,DAB的中點(diǎn),P是平面上的一點(diǎn),且DP=1,連接BP,CP

(1)如圖,當(dāng)點(diǎn)P在線段BD上時(shí),求CP的長(zhǎng);

(2)當(dāng)△BPC是等腰三角形時(shí),求CP的長(zhǎng);

(3)將點(diǎn)B繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B′,連接AB′,求AB′的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是數(shù)學(xué)中最常見的定理之一,熟練的掌握勾股數(shù),對(duì)迅速判斷、解答題目有很大幫助,觀察下列幾組勾股數(shù):

1

2

3

4

1)你能找出它們的規(guī)律嗎?(填在上面的橫線上)

2)你能發(fā)現(xiàn),之間的關(guān)系嗎?

3)對(duì)于偶數(shù),這個(gè)關(guān)系 (填“成立”或“不成立”)嗎?

4)你能用以上結(jié)論解決下題嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABD中,ABAD,點(diǎn)M 為邊AD上一動(dòng)點(diǎn),點(diǎn)EDA的延長(zhǎng)線上,且AMAE,以BE為直角邊,向外作等腰Rt△BEG,MGABN,連NE、DN

(1)求證:∠BEN=∠BGN

(2)求的值.

(3)當(dāng)MAD上運(yùn)動(dòng)時(shí),探究四邊形BDNG的形狀,并證明之.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,E,F(xiàn)分別在邊AC、BC上,滿足AE=CF,連接BE,AF交于點(diǎn)P.

(1)求證:ABE≌△CAF;

(2)求∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案