如圖,點(diǎn)A、B、C在⊙O上,∠AOB=120°,D在A(yíng)C延長(zhǎng)線(xiàn)上,CD=BC,則∠D=   
【答案】分析:由圓周角定理可求得∠ACB的度數(shù),又由等腰三角形的性質(zhì)與三角形外角的性質(zhì),即可求得答案.
解答:解:∵點(diǎn)A、B、C在⊙O上,∠AOB=120°,
∴∠ACB=∠AOB=×120°=60°,
∵CD=BC,
∴∠CBD=∠D,
∵∠CBD+∠D=∠ACB,
∴∠D=∠ACB=30°.
故答案為:30°.
點(diǎn)評(píng):此題考查了圓周角定理、等腰三角形的性質(zhì)以及三角形外角的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,O,B在同一直線(xiàn)上,射線(xiàn)OD平分∠AOC,射線(xiàn)OE平分∠BOC.
(1)若∠COE=60°,求∠COD及∠BOD的度數(shù);
(2)你能發(fā)現(xiàn)射線(xiàn)OD,OE有什么位置關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、B、C在⊙O上,AO∥BC,∠OBC=40°,則∠ACB的度數(shù)是
20°
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)已知:如圖,點(diǎn)E,A,C在同一直線(xiàn)上,AB∥CD,AB=CE,AC=CD.
求證:BC=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鞍山)如圖,點(diǎn)G、E、F分別在平行四邊形ABCD的邊AD、DC和BC上,DG=DC,CE=CF,點(diǎn)P是射線(xiàn)GC上一點(diǎn),連接FP,EP.
求證:FP=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通二模)如圖,點(diǎn)A是雙曲線(xiàn)y=
4
x
在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

同步練習(xí)冊(cè)答案