【題目】完成下面推理過(guò)程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
【答案】.對(duì)頂角相等 ; 同位角相等,兩直線(xiàn)平行 ; BFD
兩直線(xiàn)平行,同位角相等 BFD 內(nèi)錯(cuò)角相等,兩直線(xiàn)平行
【解析】根據(jù)證平行的過(guò)程,一步步的將題中空缺部分補(bǔ)充完整即可.
證明:∵∠1=∠2(已知),且∠1=∠4(對(duì)頂角相等),
∴∠2=∠4(等量代換)
∴CE∥BF(同位角相等,兩直線(xiàn)平行),
∴∠C=∠3(兩直線(xiàn)平行,同位角相等).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代換),
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起,
(1)若∠DCE=25°,∠ACB=;若∠ACB=150°,則∠DCE=;
(2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說(shuō)明理由;
(3)如圖(2),若是兩個(gè)同樣的直角三角尺60°銳角的頂點(diǎn)A重合在一起,則∠DAB與∠CAE的大小又有何關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)學(xué)生進(jìn)行體育測(cè)試,七年級(jí)(2)班男生的立定跳遠(yuǎn)成績(jī)制成頻數(shù)分布直方圖,圖中從左到右各矩形的高之比是,最后一組的頻數(shù)是6,根據(jù)直方圖所表達(dá)的信息,解答下列問(wèn)題。
(1)該班有多少名男生?
(2)若立定跳遠(yuǎn)的成績(jī)?cè)?/span>2.0米以上(包括2.0米)為合格率是多少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料
通過(guò)小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”.而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如: .
我們定義:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱(chēng)之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱(chēng)之為“真分式”.
如: , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.
類(lèi)似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如: ; ;
再如: .
解決下列問(wèn)題:
(1)分式是 分式(填“真分式”或“假分式”);
(2)假分式可化為帶分式 的形式;
(3)如果分式的值為整數(shù),那么x的整數(shù)值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com