【題目】如圖,點(diǎn)是直角三角形斜邊上一動點(diǎn)(不與點(diǎn)重合),作直線,分別過點(diǎn),向直線作垂線,垂足分別為,,為斜邊的中點(diǎn).

1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),的位置關(guān)系是______,的數(shù)量關(guān)系是______;

2)如圖2,當(dāng)點(diǎn)在線段上(不與點(diǎn)重合)時(shí),試猜想的數(shù)量關(guān)系,并說明理由;

3)如圖3,當(dāng)點(diǎn)在線段的延長線上時(shí),此時(shí)(2)中的結(jié)論是否仍成立?請說明理由.

【答案】1AEBFQE=QF,(2QE=QF,證明見解析;(3)當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論成立,證明見解析.

【解析】

1)根據(jù)AAS推出AEQ≌△BFQ即可得出答案;

2)延長EQBFD,求出AEQ≌△BDQ,根據(jù)全等三角形的性質(zhì)得出EQ=QD,根據(jù)直角三角形斜邊上中點(diǎn)性質(zhì)得出即可;

3)延長EQFBD,求出AEQ≌△BDQ,根據(jù)全等三角形的性質(zhì)得出EQ=QD,根據(jù)直角三角形斜邊上中點(diǎn)性質(zhì)得出即可

1)如圖1

當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AEBF的位置關(guān)系是AEBFQEQF的數(shù)量關(guān)系是AE=BF,

理由:

QAB的中點(diǎn),

AQ=BQ,

AECQBFCQ,

AEBF,∠AEQ=BFQ=90°

AEQBFQ

∴△AEQ≌△BFQAAS),

QE=QF

2

QE=QF,

證明:如圖2,延長EQBFD,

∵由(1)知:AEBF,

∴∠AEQ=BDQ

AEQBDQ

∴△AEQ≌△BDQAAS),

EQ=DQ

∵∠BFE=90°,

QE=QF

3)當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論成立,

證明:延長EQFBD,如圖3,

∵由(1)知:AEBF,

∴∠AEQ=BDQ,

AEQBDQ

∴△AEQ≌△BDQAAS),

EQ=DQ,

∵∠BFE=90°,

QE=QF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的邊AB、AC的垂直平分線相交于點(diǎn)P.連接PB、PC,若∠A=70°,則∠PBC的度數(shù)是 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在線段BC上,∠1=∠2AEAC

1)在不添加任何字母的情況下,請?jiān)傺a(bǔ)充一個(gè)條件,使得△ABC≌△ADE,你補(bǔ)充的條件是 (至少寫出兩個(gè)可行的條件);

2)請你從所給條件中選一個(gè),使△ABC≌△ADE,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美麗的洪澤湖周邊景點(diǎn)密布.如圖A,B為湖濱的兩個(gè)景點(diǎn),C為湖心一個(gè)景點(diǎn).景點(diǎn)B在景點(diǎn)C的正東,從景點(diǎn)A看,景點(diǎn)B在北偏東75°方向,景點(diǎn)C在北偏東30°方向.一游客自景點(diǎn)駕船以每分鐘20米的速度行駛了10分鐘到達(dá)景點(diǎn)C,之后又以同樣的速度駛向景點(diǎn)B,該游客從景點(diǎn)C到景點(diǎn)B需用多長時(shí)間(精確到1分鐘)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)Ex,y)是拋物線上一動點(diǎn),且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積Sx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)當(dāng)四邊形OEAF的面積為24時(shí),請判斷OEAF是否為菱形?

是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生號召,某校開展了志愿者服務(wù)活動,活動項(xiàng)目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項(xiàng),活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計(jì)圖中,求活動數(shù)為3項(xiàng)的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O直徑,AC是⊙O的切線,連接BC交⊙O于點(diǎn)F,取的中點(diǎn)D,連接ADBC于點(diǎn)E,過點(diǎn)EEHABH.

(1)求證:HBE∽△ABC;

(2)若CF=4,BF=5,求ACEH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,BM=CM,MDAC,MGAB,DEAB,GFAC.求證:四邊形HGMD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).

(1)當(dāng)﹣2x3時(shí),求y的取值范圍;

(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案