【題目】如圖,點(diǎn)是直角三角形斜邊上一動點(diǎn)(不與點(diǎn),重合),作直線,分別過點(diǎn),向直線作垂線,垂足分別為,,為斜邊的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),與的位置關(guān)系是______,與的數(shù)量關(guān)系是______;
(2)如圖2,當(dāng)點(diǎn)在線段上(不與點(diǎn)重合)時(shí),試猜想與的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點(diǎn)在線段的延長線上時(shí),此時(shí)(2)中的結(jié)論是否仍成立?請說明理由.
【答案】(1)AE∥BF,QE=QF,(2)QE=QF,證明見解析;(3)當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論成立,證明見解析.
【解析】
(1)根據(jù)AAS推出△AEQ≌△BFQ即可得出答案;
(2)延長EQ交BF于D,求出△AEQ≌△BDQ,根據(jù)全等三角形的性質(zhì)得出EQ=QD,根據(jù)直角三角形斜邊上中點(diǎn)性質(zhì)得出即可;
(3)延長EQ交FB于D,求出△AEQ≌△BDQ,根據(jù)全等三角形的性質(zhì)得出EQ=QD,根據(jù)直角三角形斜邊上中點(diǎn)性質(zhì)得出即可
(1)如圖1,
當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是AE∥BF,QE與QF的數(shù)量關(guān)系是AE=BF,
理由:
∵Q為AB的中點(diǎn),
∴AQ=BQ,
∵AE⊥CQ,BF⊥CQ,
∴AE∥BF,∠AEQ=∠BFQ=90°,
在△AEQ和△BFQ中
∴△AEQ≌△BFQ(AAS),
∴QE=QF,
(2)
QE=QF,
證明:如圖2,延長EQ交BF于D,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,
在△AEQ和△BDQ中
∴△AEQ≌△BDQ(AAS),
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF;
(3)當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論成立,
證明:延長EQ交FB于D,如圖3,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,
在△AEQ和△BDQ中
∴△AEQ≌△BDQ(AAS),
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊AB、AC的垂直平分線相交于點(diǎn)P.連接PB、PC,若∠A=70°,則∠PBC的度數(shù)是 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在線段BC上,∠1=∠2,AE=AC.
(1)在不添加任何字母的情況下,請?jiān)傺a(bǔ)充一個(gè)條件,使得△ABC≌△ADE,你補(bǔ)充的條件是 (至少寫出兩個(gè)可行的條件);
(2)請你從所給條件中選一個(gè),使△ABC≌△ADE,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的洪澤湖周邊景點(diǎn)密布.如圖A,B為湖濱的兩個(gè)景點(diǎn),C為湖心一個(gè)景點(diǎn).景點(diǎn)B在景點(diǎn)C的正東,從景點(diǎn)A看,景點(diǎn)B在北偏東75°方向,景點(diǎn)C在北偏東30°方向.一游客自景點(diǎn)駕船以每分鐘20米的速度行駛了10分鐘到達(dá)景點(diǎn)C,之后又以同樣的速度駛向景點(diǎn)B,該游客從景點(diǎn)C到景點(diǎn)B需用多長時(shí)間(精確到1分鐘)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動點(diǎn),且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號召,某校開展了志愿者服務(wù)活動,活動項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項(xiàng),活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動數(shù)為3項(xiàng)的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,AC是⊙O的切線,連接BC交⊙O于點(diǎn)F,取的中點(diǎn)D,連接AD交BC于點(diǎn)E,過點(diǎn)E作EH⊥AB于H.
(1)求證:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時(shí),求y的取值范圍;
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com