【題目】如圖,兩個(gè)邊長分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點(diǎn)E.若OB2﹣BE2=10,則k的值是( 。
A. 3 B. 4 C. 5 D. 4
【答案】C
【解析】設(shè)E點(diǎn)坐標(biāo)為(a,b),則AO+DE=a,AB﹣BD=b,根據(jù)△ABO和△BED都是等腰直角三
角形,得到EB=BD,OB=AB,再根據(jù)OB2﹣EB2=10,運(yùn)用平方差公式即可得到(AO+DE)(AB ﹣BD)=5,進(jìn)而得到ab=5,據(jù)此可得k=5.
設(shè)E點(diǎn)坐標(biāo)為(a,b),則AO+DE=a,AB﹣BD=b,
∵△ABO和△BED都是等腰直角三角形,
∴EB=BD,OB=AB,BD=DE,OA=AB,
∵OB2﹣EB2=10,
∴2AB2﹣2BD2=10,
即AB2﹣BD2=5,
∴(AB+BD)(AB﹣BD)=5,
∴(AO+DE)(AB﹣BD)=5,
∴ab=5,
∴k=5.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用橡皮泥做一個(gè)棱長為4cm的正方體.
(1)如圖(1),在頂面中心位置處從上到下打一個(gè)邊長為1cm的正方形通孔,打孔后的橡皮泥的表面積是多少?;
(2)如果在第(1)題打孔后,再在正面中心位置處(按圖(2)中的虛線)從前到后打一個(gè)邊長為1cm的正方形通孔,那么打孔后的橡皮泥的表面積為是多少?;
(3)如果把第(2)題中從前到后所打的正方形通孔擴(kuò)大成一個(gè)長xcm、寬1cm的長方形通孔,能不能使所得橡皮泥的表面積為130cm2?如果能,請(qǐng)求出x;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點(diǎn)C成中心對(duì)稱的△A1B1C1.
(2)將△A1B1C1向右平移4個(gè)單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC,CD,DA運(yùn)動(dòng)到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是( 。
A. 10B. 16C. 20D. 36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題.
用棋子擺成的“T”字形圖如圖所示:
(1)填寫下表:
圖形序號(hào) | ① | ② | ③ | ④ | … | ⑩ |
每個(gè)圖案中棋子個(gè)數(shù) | 5 | 8 | … |
(2)寫出第n個(gè)“T”字形圖案中棋子的個(gè)數(shù)_________________(用含n的代數(shù)式表示);
(3)第20個(gè)“T”字形圖案共有棋子____________個(gè)?
(4)計(jì)算前20個(gè)“T”字形圖案中棋子的總個(gè)數(shù).
(提示:請(qǐng)你先思考下列問題:第1個(gè)圖案與第20個(gè)圖案中共有多少個(gè)棋子?第2個(gè)圖案與第19個(gè)圖案中共有多少個(gè)棋子?第3個(gè)圖案與第18個(gè)圖案呢?)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:
(1)已知點(diǎn)A,B,C表示的數(shù)分別為1,﹣2.5,﹣3觀察數(shù)軸,B,C兩點(diǎn)之間的距離為 ;與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 ;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是 ;若此數(shù)軸上M,N兩點(diǎn)之間的距離為2020(M在N的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則MM兩點(diǎn)表示的數(shù)分別是:M: ,N: .
(3)若數(shù)軸上P,Q兩點(diǎn)間的距離為m(P在Q左側(cè)),表示數(shù)n的點(diǎn)到P,Q兩點(diǎn)的距離相等,則將數(shù)軸折疊,使得P點(diǎn)與Q點(diǎn)重合時(shí),P,Q兩點(diǎn)表示的數(shù)分別為:P ,Q .(用含m,n的式子表示這兩個(gè)數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一種零件的直徑的合格情況,隨機(jī)各抽取了10個(gè)樣品進(jìn)行檢測,已知零件的直徑均為整數(shù),整理數(shù)據(jù)如下:(單位:)
170~174 | 175~179 | 180~184 | 185~189 | |
甲車間 | 1 | 3 | 4 | 2 |
乙車間 | 0 | 6 | 2 | 2 |
(1)分別計(jì)算甲、乙兩車間生產(chǎn)的零件直徑的平均數(shù);
(2)直接說出甲、乙兩車間生產(chǎn)的零件直徑的中位數(shù)都在哪個(gè)小組內(nèi),眾數(shù)是否在其相應(yīng)的小組內(nèi)?
(3)若該零件的直徑在的范圍內(nèi)為合格,甲、乙兩車間哪一個(gè)車間生產(chǎn)的零件直徑合格率高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點(diǎn)C作CE∥AD交△ABC的外接圓O于點(diǎn)E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com