【題目】如圖:在平面直角坐標(biāo)系中A(3,2),B(4,3),C(1,1).
(1)在圖中作出△ABC關(guān)于y軸對稱圖形△A1B1C1;
(2)寫出A1、B1、C1的坐標(biāo)分別是A1(___,___),B1(___,___),C1(___,___);
(3)△ABC的面積是___.
【答案】(1)詳見解析;(2)A1(3,2),B1(4,-3),C1(1,-1);(3)6.5.
【解析】
(1)分別作出點(diǎn)A、B、C關(guān)于y軸對稱的點(diǎn)A1,B1,C1,然后順次連接即可;
(2)根據(jù)坐標(biāo)系,寫出對應(yīng)點(diǎn)的坐標(biāo).
(3)利用△ABC所在梯形面積減去周圍三角形面積,進(jìn)而得出答案.
(1)如圖所示,△A1B1C1即為所求.
(2)A1(3,2),B1(4,-3),C1(1,-1);
(3)如圖所示,S△ABC= S梯形ABDE-S△AEC-S△DBC
=(2+3)×(3+2)2×33×2
=12.5﹣3﹣3
=6.5.
故答案為:6.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,是圓直徑,是圓的切線,切點(diǎn)為,平行于弦,,的延長線交于點(diǎn),若,且,的長是關(guān)于的方程的兩個根
證明:是圓的切線;
求線段的長;
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù),則下列說法正確的是( )
A. 圖象的開口向下 B. 函數(shù)的最小值為
C. 圖象的對稱軸為直線 D. 當(dāng)時,隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=(),將線段BC繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到線段BD。
(1)如圖1,直接寫出∠ABD的大。ㄓ煤的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結(jié)DE,若∠DEC=45°,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)是線段的中點(diǎn),,.
(1)如圖1,若,求證是等邊三角形;
(2)如圖1,在(1)的條件下,若點(diǎn)在射線上,點(diǎn)在點(diǎn)右側(cè),且是等邊三角形,的延長線交直線于點(diǎn),求的長度;
(3)如圖2,在(1)的條件下,若點(diǎn)在線段上,是等邊三角形,且點(diǎn)沿著線段從點(diǎn)運(yùn)動到點(diǎn),點(diǎn)隨之運(yùn)動,求點(diǎn)的運(yùn)動路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點(diǎn)F,則DF的長為___________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店老板第一次用1000元購進(jìn)一批文具,很快銷售完畢;第二次購進(jìn)時發(fā)現(xiàn)每件文具進(jìn)價比第一次上漲了2 5元.老板用2500元購進(jìn)了第二批文具,所購進(jìn)文具的數(shù)量是第一次購進(jìn)數(shù)量的2倍,同樣很快銷售完畢,兩批文具的售價均為每件15元.
(1)問第二次購進(jìn)了多少件文具?
(2)文具店老板第一次購進(jìn)的文具有3% 的損耗,第二次購進(jìn)的文具有5% 的損耗,問文具店老板在這兩筆生意中是盈利還是虧本?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠B=70°,求弧CD的度數(shù);
(2)若AB=26,DE=8,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com