【題目】已知等腰直角△ABC,∠C=90°,AC=2,D為邊AC上一動(dòng)點(diǎn),連結(jié)BD,在射線(xiàn)BD上取一點(diǎn)E使BEBD=AB2.若點(diǎn)DA運(yùn)動(dòng)到C,則點(diǎn)E運(yùn)動(dòng)的路徑長(zhǎng)為_____

【答案】π

【解析】

延長(zhǎng)BC至點(diǎn)F,使得BC=CF,以點(diǎn)C為圓心,以CF為半徑,作⊙C,根據(jù)相似三角形的判定與性質(zhì)可知∠BFA=BEA=45°,從而可知點(diǎn)AB、F、E四點(diǎn)共圓,點(diǎn)E上運(yùn)動(dòng),利用弧長(zhǎng)公式即可求得E的運(yùn)動(dòng)路徑長(zhǎng).

延長(zhǎng)BC至點(diǎn)F,使得BC=CF,

以點(diǎn)C為圓心,以CF為半徑,作⊙C,

BEBD=AB2

,

∵∠DBA=ABE,

∴△ABD∽△EBA,

∴∠BAD=AEB=45°,

∵∠BFA=45°,

∴∠BFA=BEA=45°,

∴點(diǎn)A、BF、E四點(diǎn)共圓,

∵點(diǎn)DAC上運(yùn)動(dòng),

∴點(diǎn)E上運(yùn)動(dòng),

∴弧AF的長(zhǎng)為:,

故答案為:π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商店購(gòu)進(jìn)了足球和排球共20個(gè),一共花了1360元,進(jìn)價(jià)和售價(jià)如表:

足球

排球

進(jìn)價(jià)(元/個(gè))

80

50

售價(jià)(元/個(gè))

95

60

l)購(gòu)進(jìn)足球和排球各多少個(gè)?

2)全部銷(xiāo)售完后商店共獲利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣ax2+2ax+cx軸相交于A(﹣1,0)、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸相交于點(diǎn)C03),點(diǎn)D是拋物線(xiàn)的頂點(diǎn).

1)如圖1,求拋物線(xiàn)的解析式;

2)如圖1,點(diǎn)F0,b)在y軸上,連接AF,點(diǎn)Q是線(xiàn)段AF上的一個(gè)動(dòng)點(diǎn),P是第一象限拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),當(dāng)b=﹣時(shí),求四邊形CQBP面積的最大值與點(diǎn)P的坐標(biāo);

3)如圖2,點(diǎn)C1與點(diǎn)C關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸對(duì)稱(chēng).將拋物線(xiàn)y沿直線(xiàn)AD平移,平移后的拋物線(xiàn)記為y1,y1的頂點(diǎn)為D1,將拋物線(xiàn)y1沿x軸翻折,翻折后的拋物線(xiàn)記為y2,y2的頂點(diǎn)為D2.在(2)的條件下,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為P1,在平移過(guò)程中,是否存在以P1D2為腰的等腰△C1P1D2,若存在請(qǐng)直接寫(xiě)出點(diǎn)D2的橫坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,ABa,∠ABC60°,過(guò)點(diǎn)AAEBC,垂足為E,AFCD,垂足為F

1)連接EF,用等式表示線(xiàn)段EFEC的數(shù)量關(guān)系,并說(shuō)明理由;

2)連接BF,過(guò)點(diǎn)AAKBF,垂足為K,求BK的長(zhǎng)(用含a的代數(shù)式表示);

3)延長(zhǎng)線(xiàn)段CBG,延長(zhǎng)線(xiàn)段DCH,且BGCH,連接AG、GHAH

判斷△AGH的形狀,并說(shuō)明理由;

a2,SADH3+),求sinGAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙OAB于點(diǎn)F,連接DB交⊙O于點(diǎn)H,EBC上的一點(diǎn),且BEBF,連接DE

1)求證:DAF≌△DCE

2)求證:DE是⊙O的切線(xiàn).

3)若BF2DH,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將立方體紙盒沿某些棱剪開(kāi),且使六個(gè)面連在一起,然后鋪平,可以得到其表面展開(kāi)圖的平面圖形.

1)以下兩個(gè)方格圖中的陰影部分能表示立方體表面展開(kāi)圖的是   (填AB).

2)在以下方格圖中,畫(huà)一個(gè)與(1)中呈現(xiàn)的陰影部分不相似(包括不全等)的立方體表面展開(kāi)圖.(用陰影表示)

3)如圖中的實(shí)線(xiàn)是立方體紙盒的剪裁線(xiàn),請(qǐng)將其表面展開(kāi)圖畫(huà)在右圖的方格圖中.(用陰影表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若有序數(shù)對(duì)(n,m)表示第n排,從左到右第m個(gè)數(shù),如(4,3)表示8,已知1+2+3+…+n=,則表示2020的有序數(shù)對(duì)是(  )

A.(644)B.(65,4)C.(64,61)D.(6561)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線(xiàn)y軸交于點(diǎn)D03).

1)直接寫(xiě)出c的值;

2)若拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線(xiàn)BC的解析式;

3)已知點(diǎn)P是直線(xiàn)BC上一個(gè)動(dòng)點(diǎn),

當(dāng)點(diǎn)P在線(xiàn)段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)PPE⊥y軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求sx的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;

試探索:在直線(xiàn)BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r⊙P,既與拋物線(xiàn)的對(duì)稱(chēng)軸相切,又與以點(diǎn)C為圓心,半徑為1⊙C相切?如果存在,試求r的值,并直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,B50),點(diǎn)A在第一象限,且OAOB,sinAOB

1)求過(guò)點(diǎn)OA,B三點(diǎn)的拋物線(xiàn)的解析式.

2)若y的圖象過(guò)(1)中的拋物線(xiàn)的頂點(diǎn),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案