【題目】20173月起,成都市中心城區(qū)居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:

I級(jí):居民每戶每月用水18噸以內(nèi)含18噸每噸收水費(fèi)a元;

第Ⅱ級(jí):居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級(jí)標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)b元;

第Ⅲ級(jí):居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級(jí)標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)c元.

設(shè)一戶居民月用水x噸,應(yīng)繳水費(fèi)為y元,yx之間的函數(shù)關(guān)系如圖所示

1)根據(jù)圖象直接作答:a   ,b   ;

2)求當(dāng)x≥25時(shí)yx之間的函數(shù)關(guān)系;

3)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi),請(qǐng)你根據(jù)居民每戶月用水量的大小設(shè)計(jì)出對(duì)居民繳費(fèi)最實(shí)惠的方案.(寫出過程)

【答案】13;4;(2)當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為y6x68;(3)當(dāng)x34時(shí),選擇繳費(fèi)方案①更實(shí)惠;當(dāng)x34時(shí),選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)x34時(shí),選擇繳費(fèi)方案②更實(shí)惠

【解析】

1)根據(jù)單價(jià)=總價(jià)÷數(shù)量可求出a,b的值,此問得解;

2)觀察函數(shù)圖象,找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出當(dāng)x≥25時(shí)yx之間的函數(shù)關(guān)系;

3)由總價(jià)=單價(jià)×數(shù)量可找出選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式,分別找出當(dāng)6x684x,6x684x6x684x時(shí)x的取值范圍(x的值),選擇費(fèi)用低的方案即可得出結(jié)論.

1a54÷183

b=(8254÷2518)=4

故答案為:3;4

2)設(shè)當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為ymx+nm≠0),

將(2582),(35,142)代入ymx+n,得:,

解得:

∴當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為y6x68

3)根據(jù)題意得:選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式為y4x

當(dāng)6x684x時(shí),x34;

當(dāng)6x684x時(shí),x34

當(dāng)6x684x時(shí),x34

∴當(dāng)x34時(shí),選擇繳費(fèi)方案①更實(shí)惠;當(dāng)x34時(shí),選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)x34時(shí),選擇繳費(fèi)方案②更實(shí)惠.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知兩點(diǎn)A(3,m)B(2m,4),且ABx軸距離相等,求B點(diǎn)坐標(biāo).

(2)點(diǎn)A在第四象限,當(dāng)m為何值時(shí),點(diǎn)A(m+23m5)x軸的距離是它到y軸距離的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣ 時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)CAB上一點(diǎn),△ACM、△CBN都是等邊三角形.

(1)說明ANMB

(2)將△ACM繞點(diǎn)C按逆時(shí)針旋轉(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖畫出符合要求的圖形;

(3)在(2)所得到的圖形中,結(jié)論“ANBM”是否成立?若成立,請(qǐng)說明理由;若不成立,也請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD,ADBC,AD>BC,BC=6 cm,動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),P1 cm/s的速度由AD運(yùn)動(dòng),Q2cm/s的速度由CB運(yùn)動(dòng)(Q運(yùn)動(dòng)到B時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)),________后四邊形ABQP為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,點(diǎn)P和Q同時(shí)從D、B出發(fā),P由D向C運(yùn)動(dòng),速度為每秒1cm,點(diǎn)Q由B向A運(yùn)動(dòng),速度為每秒3cm,試求幾秒后,P、Q和梯形ABCD的兩個(gè)頂點(diǎn)所形成的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且速度都為1cm/s,連接AQ、CP交于點(diǎn)M,下面四個(gè)結(jié)論:①△ABQ≌△CAP;;②∠CMQ的度數(shù)不變,始終等于60°③BP=CM;正確的有幾個(gè)( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,如圖A、B兩點(diǎn)之間的距離表示為AB,記作AB|ab|.回答下列問題:

1)數(shù)軸上表示25兩點(diǎn)之間的距離是   ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是   ;

2)已知|a3|7,則有理數(shù)a   ;

3)若數(shù)軸上表示數(shù)b的點(diǎn)位于﹣43的兩點(diǎn)之間,則|b3|+|b+4|   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以Rt△ABC的斜邊BC為一邊在△ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6 ,那么AC=

查看答案和解析>>

同步練習(xí)冊(cè)答案