【題目】如圖,在四邊形ABCD中,BE⊥AC,DF⊥AC,垂足分別為E,F(xiàn),BE=DF,AE=CF.
(1)求證:△AFD≌△CEB;
(2)若∠CBE=∠BAC,四邊形ABCD是怎樣的四邊形?證明你的結(jié)論.

【答案】
(1)證明:∵BE⊥AC,DF⊥AC,

∴∠AFD=∠CEB=90°.

∵AE=FC,

∴AE+EF=FC+EF,

∴AF=CE,

又∵BE=DF,

∴△AFD≌△CEB;


(2)證明:四邊形ABCD為矩形.

∵△AFD≌△CEB,

∴AD=BC,∠BCE=∠DAF.

∴AD∥BC,

∴四邊形ABCD為平行四邊形,

∵∠CBE=∠BAC,

又∵∠CBE+∠ACB=90°,

∴∠BAC+∠ACB=90°,

∴∠ABC=90°,

∴四邊形ABCD為矩形.


【解析】(1)求出AF=CE,再利用“邊角邊”證明即可;(2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得AD=BC,全等三角形對(duì)應(yīng)角相等可得∠BCE=∠DAF,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行證明AD∥BC,然后判斷出四邊形ABCD是平行四邊形,求出∠ABC=90°,最后根據(jù)有一個(gè)角是直角的平行四邊形是矩形證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移2個(gè)單位后,得到△A′B′C′,連接A′C,則△A′B′C的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點(diǎn)為M,與y軸的交點(diǎn)為N,我們稱以N為頂點(diǎn),對(duì)稱軸是y軸且過(guò)點(diǎn)M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.

(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 , 衍生直線的解析式是;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點(diǎn)為M,與y軸交點(diǎn)為N,將它的衍生直線MN先繞點(diǎn)N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個(gè)單位得直線n,P是直線n上的動(dòng)點(diǎn),是否存在點(diǎn)P,使△POM為直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)(1)班準(zhǔn)備購(gòu)買(mǎi)大課間活動(dòng)器材呼啦圈和跳繩,已知購(gòu)買(mǎi)1根跳繩和2個(gè)呼啦圈要35元,購(gòu)買(mǎi)2根跳繩和1個(gè)呼啦圈要25元.
(1)求每根跳繩、每個(gè)呼啦圈各多少元?
(2)根據(jù)班級(jí)實(shí)際情況,需購(gòu)買(mǎi)跳繩和呼啦圈的總數(shù)量為30,總費(fèi)用不超過(guò)300元,但不低于280元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買(mǎi)方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,連接對(duì)角線AC,以AC為邊作第二個(gè)菱形,使,連接,再以為邊作第三個(gè)菱形,使;…,按此規(guī)律所作的第六個(gè)菱形的邊長(zhǎng)為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,CAB的平分線分別交BD、BCEF,作BHAF于點(diǎn)H,分別交ACCD于點(diǎn)G、P,連結(jié)GEGF

1)求證:OAE≌△OBG

2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)問(wèn)題背景
如圖①,BC是⊙O的直徑,點(diǎn)A在⊙O上,AB=AC,P為BmC上一動(dòng)點(diǎn)(不與B,C重合),求證: PA=PB+PC.

小明同學(xué)觀察到圖中自點(diǎn)A出發(fā)有三條線段AB,AP,AC,且AB=AC,這就為旋轉(zhuǎn)作了鋪墊.于是,小明同學(xué)有如下思考過(guò)程:
第一步:將△PAC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△QAB(如圖①);
第二步:證明Q,B,P三點(diǎn)共線,進(jìn)而原題得證.
請(qǐng)你根據(jù)小明同學(xué)的思考過(guò)程完成證明過(guò)程.
(2)類比遷移
如圖②,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,求OC的最小值.

(3)拓展延伸
如圖③,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB= AC,AB⊥AC,垂足為A,則OC的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號(hào).已知A、B兩船相距100( +1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測(cè)點(diǎn)D,測(cè)得船C正好在觀測(cè)點(diǎn)D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運(yùn)算結(jié)果有根號(hào),請(qǐng)保留根號(hào)).
(2)已知距離觀測(cè)點(diǎn)D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營(yíng)救船C,在去營(yíng)救的途中有無(wú)觸礁的危險(xiǎn)?(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年為更好地宣傳“開(kāi)車不喝酒,喝酒不開(kāi)車”的駕車?yán)砟,某市一家?bào)社設(shè)計(jì)了如圖的調(diào)查問(wèn)卷(單選).在隨機(jī)調(diào)查了某市全部10000名司機(jī)中的部分司機(jī)后,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

根據(jù)以上信息解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中m=
(2)該市支持選項(xiàng)C的司機(jī)大約有多少人?
(3)若要從該市支持選項(xiàng)C的司機(jī)中隨機(jī)選擇200名,給他們簽訂“永不酒駕”的保證書(shū),則支持該選項(xiàng)的司機(jī)小李被選中的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案