【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=, AD=4.
(1)求BC的長(zhǎng);
(2)求tan∠DAE的值.
【答案】(1) (2)
【解析】
試題(1)先由三角形的高的定義得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=4;解Rt△ADB,得出AB=6,根據(jù)勾股定理求出BD=2,然后根據(jù)BC=BD+DC即可求解;
(2)先由三角形的中線的定義求出CE的值,則DE=CE-CD,然后在Rt△ADE中根據(jù)正切函數(shù)的定義即可求解.
試題解析:(1)在△ABC中,∵AD是BC邊上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=4,
∴DC=AD=4.
在△ADB中,∵∠ADB=90°,sinB=,AD=4,
∴AB=
∴BD=,
∴BC=BD+DC=
(2)∵AE是BC邊上的中線,
∴CE=BC=,
∴DE=CE-CD=,
∴tan∠DAE=.
考點(diǎn): 解直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),將弧BC沿直線BC翻折,使弧BC的中點(diǎn)D恰好與圓心O重合,連接OC,CD,BD,過點(diǎn)C的切線與線段BA的延長(zhǎng)線交于點(diǎn)P,連接AD,在PB的另一側(cè)作∠MPB=∠ADC.
(1)判斷PM與⊙O的位置關(guān)系,并說明理由;
(2)若PC=,求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個(gè)填寫運(yùn)算符號(hào)的游戲:在“□□□”中的每個(gè)“口”內(nèi),填入+,-,×,÷中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.
(1)計(jì)算:
(2)若口請(qǐng)推算“口”內(nèi)的運(yùn)算符號(hào).
(3)在“□□□”的“口”內(nèi)填入運(yùn)算符號(hào)后,使計(jì)算所得的數(shù)最小,直接寫出這個(gè)最小的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始.先向左移動(dòng)6cm到達(dá)A點(diǎn),再?gòu)?/span>A點(diǎn)向右移動(dòng)10cm到達(dá)B點(diǎn),點(diǎn)C是線段AB的中點(diǎn).
(1)點(diǎn)C表示的數(shù)是 ;
(2)若點(diǎn)A以每秒2cm的速度向左移動(dòng),同時(shí)C、B兩點(diǎn)分別以每秒1cm、4cm的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,
①運(yùn)動(dòng)t秒時(shí),點(diǎn)C表示的數(shù)是 (用含有t的代數(shù)式表示);
②當(dāng)t=2秒時(shí),CBAC的值為 .
③試探索:點(diǎn)A、B、C在運(yùn)動(dòng)的過程中,線段CB與AC總有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某水渠的橫斷面是等腰梯形,已知其斜坡AD的坡度為1:1.2,斜坡BC的坡度為1:0.8,現(xiàn)測(cè)得放水前的水面寬EF為3.8米,當(dāng)水閘放水后,水渠內(nèi)水面寬GH為6米.則放水后水面上升的高度是( 。┟祝
A. 1.2 B. 1.1 C. 0.8 D. 2.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為【 】
A.1 B. C. 2 D.+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:若一個(gè)整數(shù)能表示成a2+b2(a、b是正整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”.例如:因?yàn)?3=32+22,所以13是“完美數(shù)”;再如:因?yàn)閍2+2ab+2b2=(a+b)2+b2(a、b是正整數(shù)),所以a2+2ab+2b2也是“完美數(shù)”.
(1)請(qǐng)你寫出一個(gè)大于20小于30的“完美數(shù)”,并判斷53是否為“完美數(shù)”;
(2)試判斷(x2+9y2)·(4y2+x2)(x、y是正整數(shù))是否為“完美數(shù)”,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= (k>0)的圖象上兩點(diǎn)A(x1, y1)和B(x2, y2),且x1>x2>0,分別過A、B向x軸作AA1⊥x軸于A1,BB1⊥x軸于B1,則_________ (填“>”“=”或“<”),若=2,則函數(shù)解析式為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD沿直線EF折疊,使頂點(diǎn)C恰好落在頂點(diǎn)A處,已知AB=4cm,AD=8cm,則折痕EF的長(zhǎng)為( )
A.5cmB.cmC.cmD.cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com