【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為(20,0)和(0,15),動點P從點A出發(fā)在線段AO上以每秒2cm的速度向原點O運動,動直線EF從x軸開始以每秒lcm的速度向上平行移動(即EF∥x軸),分別與y軸、線段AB交于點E、F,連接EP、FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)求t=9時,△PEF的面積;
(2)直線EF、點P在運動過程中,是否存在這樣的t使得△PEF的面積等于40cm2?若存在,請求出此時t的值;若不存在,請說明理由;
(3)當(dāng)t為何值時,△EOP與△BOA相似.
【答案】(1)36cm2;(2)不存在;(3)t=6或t=.
【解析】
(1)由于EF∥x軸,則S△PEF=EFOE.t=9時,OE=9,關(guān)鍵是求EF.易證△BEF∽△BOA,則=,從而求出EF的長度,得出△PEF的面積;
(2)假設(shè)存在這樣的t,使得△PEF的面積等于40cm2,則根據(jù)面積公式列出方程,由根的判別式進行判斷,得出結(jié)論;
(3)如果△EOP與△BOA相似,由于∠EOP=∠BOA=90°,則只能點O與點O對應(yīng),然后分兩種情況分別討論:①點P與點A對應(yīng);②點P與點B對應(yīng).
解:(1)∵EF∥OA,
∴∠BEF=∠BOA
又∵∠B=∠B,
∴△BEF∽△BOA,
∴=,
當(dāng)t=9時,OE=9,OA=20,OB=15,
∴EF==8,
∴S△PEF=EFOE=×8×9=36(cm2);
(2)∵△BEF∽△BOA,
∴EF===(15-t),
∴×(15-t)×t=40,
整理,得t2-15t+60=0,
∵△=152-4×1×60<0,
∴方程沒有實數(shù)根.
∴不存在使得△PEF的面積等于40cm2的t值;
(3)當(dāng)∠EPO=∠BAO時,△EOP∽△BOA,
∴=,即=,
解得t=6;
當(dāng)∠EPO=∠ABO時,△EOP∽△AOB,
∴=,即=,
解得t=.
∴當(dāng)t=6或t=時,△EOP與△BOA相似.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對是( 。
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在線段上有一點,在的同側(cè)作等腰和等腰,且,,,直線與線段,線段分別交于點,對于下列結(jié)論:①∽;②∽;③;④若,則.其中正確的是( )
A. ①②③④B. ①②③C. ①③④D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,
(1)證明:△ABD≌△BCE;
(2)證明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當(dāng)?shù)囟林形?/span>12時太陽光線與水平面的夾角為30°.
(1)如果A、B兩樓相距16米,那么A樓落在B樓上的影子有多長?
(2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應(yīng)是多少米?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨若移動終端設(shè)備的升級換代,手機已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機的情況(選項:A .和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機抽取了若干名學(xué)生進行調(diào)査,得到如下圖表(部分信息未給出):
根據(jù)以上信息解答下列問題:
(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中 的值,并補全條形統(tǒng)計圖;
(3)若該中學(xué)約有名學(xué)生,估計全校學(xué)生中利用手機購物或玩游戲的共有多少人?
并根據(jù)以上調(diào)査結(jié)果,就中學(xué)生如何合理使用手機給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=2,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM的長度為( 。
A. B. 2 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.
(1)求證:∠1=∠2;
(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com