【題目】如圖,AB切⊙O與點(diǎn)A,BE切⊙O于點(diǎn)E,連接AO并延長交⊙O于點(diǎn)C,交BE的延長線于點(diǎn)D,連接EC,若AD=8,tan∠DEC=,則CD=_____.
【答案】2
【解析】
連接OB,OE,根據(jù)切線的性質(zhì)得到AB=EB,根據(jù)全等三角形的性質(zhì)得到∠AOB=∠EOB,推出CE∥OB,得到∠DEC=∠EBO,求得∠DEC=∠ABO,得到tan∠ABO=,設(shè)OA=x,AB=2x,根據(jù)相似三角形的性質(zhì)得到DE=4,根據(jù)勾股定理即可得到結(jié)論.
解:連接OB,OE,
∵AB切⊙O與點(diǎn)A,BE切⊙O于點(diǎn)E,
∴AB=EB,
在△ABO與△EBO中,
∴△ABO≌△EBO(SSS),
∴∠AOB=∠EOB,
∴∠AOB=∠AOE,
∵∠COE=∠AOE,
∴∠AOB=∠ACE,
∴CE∥OB,
∴∠DEC=∠EBO,
∴∠DEC=∠ABO,
∵tan∠DEC=,
∴tan∠ABO=,
設(shè)OA=x,AB=2x,
∴OE=x,
∵∠OED=∠A=90°,∠D=∠D,
∴△DEO∽△DAB,
∴,
∵AD=8,
∴DE=4,
∵OE2+DE2=OD2,
∴x2+42=(8﹣x)2,
∴x=3,
∴CD=8﹣6=2.
故答案為:2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要建一個長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25米),另三邊用竹籬笆圍成,竹籬笆的長為40米,若要圍成的養(yǎng)雞場的面積為180平方米,求養(yǎng)雞場的長、寬各為多少米,設(shè)與墻平行的一邊長為米.
(1)填空:(用含的代數(shù)式表示)另一邊長為 米;
(2)列出方程,并求出問題的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個交點(diǎn)為A(﹣1,n)
(1)求反比例函數(shù)y=的表達(dá)式.
(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫出B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次三項(xiàng)式﹣x2+2x+3.
(1)關(guān)于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m為整數(shù))的根為有理數(shù),求m的值;
(2)在平面直角坐標(biāo)系中,直線y=﹣2x+n分別交x,y軸于點(diǎn)A,B,若函數(shù)y=﹣x2+2|x|+3的圖象與線段AB只有一個交點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解決數(shù)學(xué)問題時,我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.
(問題提出)
求證:如果一個定圓的內(nèi)接四邊形對角線互相垂直,那么這個四邊形的對邊的平方和是一個定值.
(從特殊入手)
我們不妨設(shè)定圓O的半徑是R,⊙O的內(nèi)接四邊形ABCD中,AC⊥BD.
請你在圖①中補(bǔ)全特殊殊位置時的圖形,并借助于所畫圖形探究問題的結(jié)論.
(問題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形繞點(diǎn)順時針旋轉(zhuǎn)至正方形,連接.
(1)如圖,求證:;
(2)如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉(zhuǎn)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=4,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動點(diǎn),則PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3與直線y=x+3交于點(diǎn)A(m,0)和點(diǎn)B(2,n),與y軸交于點(diǎn)C.
(1)求m,n的值及拋物線的解析式;
(2)在圖1中,把△AOC平移,始終保持點(diǎn)A的對應(yīng)點(diǎn)P在拋物線上,點(diǎn)C,O的對應(yīng)點(diǎn)分別為M,N,連接OP,若點(diǎn)M恰好在直線y=x+3上,求線段OP的長度;
(3)如圖2,在拋物線上是否存在點(diǎn)Q(不與點(diǎn)C重合),使△QAB和△ABC的面積相等?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=:3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com