【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接雙十一,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2設(shè)每件童裝降價(jià)x時(shí),平均每天可盈利y元.

寫出yx的函數(shù)關(guān)系式;

當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?

該專賣店要想平均每天盈利600元,可能嗎?請(qǐng)說(shuō)明理由.

【答案】1;(210元:(3)不可能,理由見解析

【解析】

根據(jù)總利潤(rùn)每件利潤(rùn)銷售數(shù)量,可得yx的函數(shù)關(guān)系式;

根據(jù)中的函數(shù)關(guān)系列方程,解方程即可求解;

根據(jù)中相等關(guān)系列方程,判斷方程有無(wú)實(shí)數(shù)根即可得.

解:根據(jù)題意得,

yx的函數(shù)關(guān)系式為;

當(dāng)時(shí),,

解得不合題意舍去

故當(dāng)該專賣店每件童裝降價(jià)10元時(shí),平均每天盈利400元;

該專賣店不可能平均每天盈利600元.

當(dāng)時(shí),,

整理得

,

方程沒(méi)有實(shí)數(shù)根,即該專賣店不可能平均每天盈利600元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保溫杯專賣店通過(guò)市場(chǎng)調(diào)研,準(zhǔn)備銷售、兩種型號(hào)的保溫杯,其中每件種保溫杯的進(jìn)價(jià)比種保溫杯的進(jìn)價(jià)高20元,已知專賣店用3200元購(gòu)進(jìn)種保溫杯的數(shù)量與用2560元購(gòu)進(jìn)種保溫杯的數(shù)量相同.

(1)求兩種保溫杯的進(jìn)價(jià);

(2)種保溫杯的售價(jià)為250元,種保溫杯的售價(jià)為180元,專賣店共進(jìn)兩種保溫杯200個(gè),設(shè)種保溫杯進(jìn)貨個(gè),求該專賣店獲得的總利潤(rùn) ()種保溫杯進(jìn)貨數(shù) (個(gè))之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車從地出發(fā),勻速駛向地.甲車以的速度行駛后,乙車才沿相同路線行駛.乙車先到達(dá)地并停留后,再以原速按原路返回,直至與甲車相遇.在此過(guò)程中,兩車之間的距離與乙車行駛時(shí)間之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:①乙車的速度是;②;③點(diǎn)的坐標(biāo)是;④.其中說(shuō)法正確的是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax22ax+x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線ACy軸于點(diǎn)D,DAC的中點(diǎn).

(1)如圖1,求拋物線的頂點(diǎn)坐標(biāo);

(2)如圖2,點(diǎn)P為拋物線對(duì)稱軸右側(cè)上的一動(dòng)點(diǎn),過(guò)點(diǎn)PPQAC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,點(diǎn)Q的橫坐標(biāo)為m,求mt的函數(shù)關(guān)系式;

(3)在(2)的條件下,如圖3,連接AP,過(guò)點(diǎn)CCEAP于點(diǎn)E,連接BE、CE分別交PQF、G兩點(diǎn),當(dāng)點(diǎn)FPG中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC 中,ABAC,D 是直線 BC 上一點(diǎn)(不與點(diǎn) B、C 重合),以 AD 為一邊在 AD的右側(cè)作△ADE,ADAE,∠DAE=∠BAC,連接 CE.

1)如圖 1,當(dāng)點(diǎn) D 在線段 BC 上時(shí),求證:ABD≌△ACE;

2)如圖 2,當(dāng)點(diǎn) D 在線段 BC 上時(shí),如果∠BAC90°,求∠BCE 的度數(shù);

3)如圖 3,若∠BAC=α,∠BCE=β.點(diǎn) D 在線段 CB 的延長(zhǎng)線上時(shí),則α、β之間有怎樣 的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,.

1)如果、分別是、的中點(diǎn),是對(duì)角線上的點(diǎn),,則的長(zhǎng)為________

2)如果分別是、上的點(diǎn),,是對(duì)角線上的點(diǎn).下列判斷正確的是_____

①在上存在無(wú)數(shù)組,,使得四邊形是平行四邊形;

②在上存在無(wú)數(shù)組,,使得四邊形是矩形;

③在上存在無(wú)數(shù)組,,使得四邊形是菱形;

④當(dāng)時(shí),存在,使得四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線OA、B兩點(diǎn),AEO的直徑,點(diǎn)CO上一點(diǎn),且AC平分PAE,過(guò)C,垂足為D

1)求證:CD⊙O的切線;

2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值: ÷-a+2),其中a=2sin60°+3tan45°

【答案】.

【解析】試題分析:先因式分解,再通分,約分化簡(jiǎn),代入數(shù)值求值.

試題解析:

解:原式= ÷-

=÷=,

a=2sin60°+3tan45°=2×+3×1=+3

∴原式==.

點(diǎn)睛辨析分式與分式方程

分式,整式A除以整式B,可以表示成的的形式.如果B中含有字母,那么稱 為分式.分式特點(diǎn)是沒(méi)有等號(hào),分式加減一般需要通分.

2)分式方程,分母中含有未知數(shù)的方程叫做分式方程.特點(diǎn)是有等號(hào),要先確定最簡(jiǎn)公分母,去分母的時(shí)候要每一項(xiàng)乘以最簡(jiǎn)公分母,所以一般不需要通分,而且要檢驗(yàn).

型】解答
結(jié)束】
22

【題目】1,圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

(1)如圖1,在小正方形的頂點(diǎn)上確定一點(diǎn)C,連接AC、BC,使得△ABC為直角三角形,其面積為5,并直接寫出△ABC的周長(zhǎng);

(2)如圖2,在小正方形的頂點(diǎn)上確定一點(diǎn)D,連接AD、BD,使得△ABD中有一個(gè)內(nèi)角為45°,且面積為3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( )

A. 2 B. 8 C. 2 D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案