【題目】某中學(xué)形展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表:
班級 | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
九(1) | 85 | ||
九(2) | 85 | 100 |
(2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好;
(3)計算兩班復(fù)賽成績的方差.
【答案】(1)九(1)的平均數(shù)為85,眾數(shù)為85,九(2)班的中位數(shù)是80;(2)九(1)班成績好些,分析見解析;(3)=70,=100
【解析】
(1)先根據(jù)條形統(tǒng)計圖得出每個班5名選手的復(fù)賽成績,然后平均數(shù)按照公式 ,中位數(shù)和眾數(shù)按照概念即可得出答案;
(2)對比平均數(shù)和中位數(shù),平均數(shù)和中位數(shù)大的成績較好;
(3)按照方差的計算公式計算即可.
解:(1)由圖可知九(1)班5名選手的復(fù)賽成績?yōu)椋?/span>75、80、85、85、100,
九(2)班5名選手的復(fù)賽成績?yōu)椋?/span>70、100、100、75、80,
∴九(1)的平均數(shù)為(75+80+85+85+100)÷5=85,
九(1)的眾數(shù)為85,
把九(2)的成績按從小到大的順序排列為:70、75、80、100、100,
∴九(2)班的中位數(shù)是80;
(2)九(1)班成績好些.因為兩個班平均分相同,但九(1)班的中位數(shù)高,所以九(1)班成績好些.
(3)==70
==100
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每一個小正方形的邊長為1.△ABC的三個頂點都在格點上,A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出△ABC向右平移6個單位的△A1B1C1,并寫出C1的坐標(biāo) ;
(3)請畫出△ABC關(guān)于原點O對稱的△A2B2C2 , 并寫出點C2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價為500元/輛,售價為700元/輛,B型車進(jìn)價為1000元/輛,售價為1300元/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線 y=x+2 與兩坐標(biāo)軸分別交于A、B 兩點,點 C 是 OB 的中點,D、E 分 別是直線 AB、y 軸上的動點,則△CDE 周長的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點,連結(jié)AD,在AD的延長線上取一點E,連結(jié)BE,CE.
(1)求證:△ABE≌△ACE
(2)當(dāng)AE與AD滿足什么數(shù)量關(guān)系時,四邊形ABEC是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點O與原點重合,頂點A、C分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點E、F,FD⊥x軸,垂足為D,連接OE、OF、EF,FD與OE相交于點G.下列結(jié)論:①OF=OE;②∠EOF=60°;③四邊形AEGD與△FOG面積相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,則直線FE的函數(shù)解析式為.其中正確結(jié)論的個數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉(zhuǎn),得△A′BO′,點 A、O 旋轉(zhuǎn)后的對應(yīng)點為 A′、O′,記旋轉(zhuǎn)角為ɑ.
(1)如圖 1,若ɑ=90°,求 AA′的長;
(2)如圖 2,若ɑ=120°,求點 O′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在正方形 ABCD 中,AB=5,點 F 是邊 DC 上的一個動點,將△ADF 繞點 A 順時針旋轉(zhuǎn) 90°至△ABE,點 F 的對應(yīng)點 E 落在 CB 的延長線上,連接 EF.
(1)如圖 1,求證:∠DAF+∠FEC=∠AEF;
(2)將△ADF 沿 AF 翻折至△AGF,連接 EG.
①如圖 2,若 DF=2,求 EG 的長;
②如圖 3,連接 BD 交 EF 于點 Q,連接 GQ,則 S△QEG 的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com