【題目】如果關于x的一元二次方程x2﹣kx+2=0中,k是投擲骰子所得的數字(1,2,3,4,5,6),則該二次方程有兩個不等實數根的概率為( 。
A. B. C. D.
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,∠C=90°,AC=8cm,BC=6cm.動點P在線段AC上以5cm/s的速度從點A運動到點C.過點P作PD⊥AB于點D,將△APD繞PD的中點旋轉180°得到△A'DP.設點P的運動時間為x(s).
(1)求點A'落在邊BC上時x的值.
(2)設△A'DP和△ABC重疊部分圖形周長為y(cm),求y與x之間的函數關系式.
(3)如圖②,另有一動點Q與點P同時出發(fā),在線段BC上以5cm/s的速度從點B運動到點C.過點Q作QE⊥AB于點E,將△BQE繞QE的中點旋轉180°得到△B'EQ.連結A′B′.當直線A'B'與△ABC的邊垂直或平行時,直接寫出x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點在直線上,點的坐標分別是,連接,將沿射線方向平移,使點O移動到點M,得到(點分別對應點).
(1)填空:m的值為_____________,點C的坐標是______________;
(2)在射線上是否存在一點N,使,如果存在,請求出點N的坐標;如果不存在,請說明理由;
(3)連接,點P是射線上一動點,請直接寫出使是等腰三角形時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春節(jié)期間,根據習俗每家每戶都會在門口掛燈籠和對聯(lián),某商店看準了商機,購進了一批紅燈籠和對聯(lián)進行銷售,已知每幅對聯(lián)的進價比每個紅燈籠的進價少10元,且用480元購進對聯(lián)的幅數是用同樣金額購進紅燈籠個數的6倍.
(1)求每幅對聯(lián)和每個紅燈籠的進價分別是多少?
(2)由于銷售火爆,第一批銷售完了以后,該商店用相同的價格再購進300幅對聯(lián)和200個紅燈籠,已知對聯(lián)售價為6元一幅,紅燈籠售價為24元一個,銷售一段時間后,對聯(lián)賣出了總數的,紅燈籠售出了總數的,為了清倉,該店老板對剩下的對聯(lián)和紅燈籠以相同的折扣數進行打折銷售,并很快全部售出,求商店最低打幾折可以使得這批貨的總利潤率不低于90%?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸上,反比例函數y=(x>0)的圖象經過菱形對角線的交點A,且與邊BC交于點F,點A的坐標為(4,2).
(1)求反比例函數的表達式;
(2)求BC所在直線的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩幢大樓的部分截面及相關數據如圖,小明在甲樓A處透過窗戶E發(fā)現乙樓F處出現火災,此時A,E,F在同一直線上.跑到一樓時,消防員正在進行噴水滅火,水流路線呈拋物線,在1.2m高的D處噴出,水流正好經過E,F. 若點B和點E、點C和F的離地高度分別相同,現消防員將水流拋物線向上平移0.4m,再向左后退了____m,恰好把水噴到F處進行滅火.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開展拓展課程展示活動,需要制作A,B兩種型號的宣傳廣告共20個,已知A,B兩種廣告牌的單價分別為40元,70元
(1)若根據活動需要,A種廣告牌數量與B種廣告牌數量之比為3:2,需要多少費用?
(2)若需制作A,B兩種型號的宣傳廣告牌,其中B種型號不少于5個,制作總費用不超過1000元,則有幾種制作方案?每一種制作方案的費用分別是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題提出)|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
(閱讀理解)
為了解決這個問題,我們先從最簡單的情況入手.|a|的幾何意義是a這個數在數軸上對應的點到原點的距離.那么|a﹣1|可以看做a這個數在數軸上對應的點到1的距離;|a﹣1|+|a﹣2|就可以看作a這個數在數軸上對應的點到1和2兩個點的距離之和.下面我們結合數軸研究|a﹣1|+|a﹣2|的最小值.
我們先看a表示的點可能的3種情況,如圖所示:
(1)如圖①,a在1的左邊,從圖中很明顯可以看出a到1和2的距離之和大于1.
(2)如圖②,a在1和2之間(包括在1,2上),可以看出a到1和2的距離之和等于1.
(3)如圖③,a在2的右邊,從圖中很明顯可以看出a到1和2的距離之和大于1.
(問題解決)
(1)|a﹣2|+|a﹣5|的幾何意義是 .請你結合數軸探究:|a﹣2|+|a﹣5|的最小值是 .
(2)|a﹣1|+|a﹣2|+|a﹣3|的幾何意義是 .請你結合數軸探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ,并在圖④的數軸上描出得到最小值時a所在的位置,由此可以得出a為 .
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
(拓展應用)
請在圖⑤的數軸上表示出a,使它到2,5的距離之和小于4,并直接寫出a的范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com