【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PPFx軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);

(2)連接PD,CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;

(3)當(dāng)CPE是等腰三角形時(shí),請直接寫出m的值.

【答案】(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為

【解析】

1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組D點(diǎn)坐標(biāo);
2)設(shè)Pm,-m2+2m+3),則Em,-m+3),則PE=-m2+m,利用三角形面積公式得到SPCD=××-m2+m=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;
3)討論:當(dāng)PC=PE時(shí),m2+-m2+2m+3-32=-m2+m2;當(dāng)CP=CE時(shí),m2+-m2+2m+3-32=m2+-m+3-32;當(dāng)EC=EP時(shí),m2+-m+3-32=-m2+m2,然后分別解方程即可得到滿足條件的m的值.

(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c,解得

拋物線的解析式為y=﹣x2+2x+3;

C(0,3)代入y=﹣x+n,解得n=3,

直線CD的解析式為y=﹣x+3,

解方程組,解得

∴D點(diǎn)坐標(biāo)為(,);

(2)存在.

設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),

∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,

∴S△PCD=(﹣m2+m)=﹣m2+m=﹣(m﹣2+,

當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;

(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=

當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;

當(dāng)EC=EP時(shí),m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=

綜上所述,m的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點(diǎn),FAD延長線上一點(diǎn),且DFBE.求證:CECF;

2)如圖2,在正方形ABCD中,EAB上一點(diǎn),GAD上一點(diǎn),如果∠GCE45°,請你利用(1)的結(jié)論證明:GEBEGD

3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°,ABBC,EAB上一點(diǎn),且∠DCE45°,BE4,DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)軸正半軸上一點(diǎn),且,點(diǎn)軸上位于點(diǎn)右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)的坐標(biāo)為

1)點(diǎn)的坐標(biāo)為( );

2)當(dāng)是等腰三角形時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,過點(diǎn)交線段于點(diǎn),連接,若點(diǎn)關(guān)于直線的對稱點(diǎn)為,當(dāng)點(diǎn)恰好落在直線上時(shí), .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)EA出發(fā),沿AB→BC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)EFE⊥AE,交CDF點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,F(xiàn)C=y,如圖2所表示的是yx的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)EBC上運(yùn)動(dòng)時(shí),FC的最大長度是,則矩形ABCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山頂建有一座鐵塔,塔高BC=80米,測量人員在一個(gè)小山坡的P處測得塔的底部B點(diǎn)的仰角為45°,塔頂C點(diǎn)的仰角為60°.已測得小山坡的坡角為30°,坡長MP=40米.求山的高度AB(精確到1米).(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, ∠ACB=90°,點(diǎn)D在直線BC上,BD=6,AD=BC,AC:CD=5:12,則S△ADB =_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔP1OA1,ΔP2A1A2是等腰直角三角形,點(diǎn)P1、P2在函數(shù)y=(x>0)的圖象上,斜邊OA1、A1A2都在x軸上,則點(diǎn)A2的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D,E分別在ACAB上,BDCE相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定ABD≌△ACE的是( 。

A.ADAEB.ABACC.BDCED.ADB=∠AEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,點(diǎn)D在邊BC上,點(diǎn)E在邊AC上,且ADAE

1)如圖1,當(dāng)AD是邊BC上的高,且∠BAD30°時(shí),求∠EDC的度數(shù);

2)如圖2,當(dāng)AD不是邊BC上的高時(shí),請判斷∠BAD與∠EDC之間的關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案