【題目】如圖,正方形ABCD 與正方形關(guān)于某點中心對稱.已知A,,D三點的坐標分別是(0,4),(0,3),(0,2).

(1)求對稱中心的坐標:

(2)寫出頂點B,C,的坐標。

【答案】(1) (0, );(2) B(-2,4)、B1(2,1)、C(-2,2)、C1(2,3)

【解析】試題分析:

(1)由題意可知點D、D1關(guān)于題中的對稱中心對稱,由此可得對稱中心是線段DD1的中點,根據(jù)D、D1的坐標求得線段DD1的中點坐標即可;

(2)由所給A、D兩點的坐標可求得正方形ABCD的邊長,結(jié)合圖形即可求得點B、C的坐標;由題意可知兩個正方形的邊長相等,這樣結(jié)合圖形和點D1的坐標即可求得B1、C1的坐標了.

試題解析

(1)DD1是對稱點,

∴對稱中心是線段DD1的中點.

∴對稱中心的坐標是(0, ).

(2)∵已知A,D兩點的坐標分別是(0,4),(0,2),

∴正方形的邊長為2.

A,B縱坐標相同,

B(-2,4)

C點縱坐標與D點縱坐標相同,橫坐標與B點橫坐標相同,

C(-2,2).

C1,D1縱坐標相同,正方形邊長為2,

C1(2,3).

C1,B1橫坐標相同,B1,A1縱坐標相同,

B1(2,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=8, AC=10D點在AC上,ABCD,E、F分別是BC、AD的中點,連結(jié)EF并延長,與BA的延長線交于點G,連接GD,若∠EFC60°,則EG的長為(

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABADACAE,BCDE,點EBC上.

1)求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,.的度數(shù).

請將求的度數(shù)的過程及理由填寫出來.

解:∵(已知),

______________________.

又∵(已知),

______________________.

________________________________.

________________________________.

又∵(已知),

_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,放置的, , ,…都是邊長為2的等邊三角形,邊軸上,點, ,…都在直線上,則的坐標是(

A. 2017,2017 B. (2017,2017)

C. (2017,2018) D. (2017,2019)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知點P的坐標為(2a+6a-3

1)當點P的縱坐標為-4,求a的值;

2)若點Py軸上,求點P的坐標;

3)若點P在第四象限,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,AB=AC,D、E分別在邊ABAC上,且滿足AD=AE.下列結(jié)論中:①;②AO平分∠BAC;③OB=OC;④AOBC;⑤若,則;其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索:在圖1至圖2中,已知的面積為a

(1)如圖1,延長的邊BC到點D,使CD=BC,連接DA;延長邊CA到點E,使CA=AE,連接DE;若的面積為,則= (用含a的代數(shù)式表示);

(2)在圖1的基礎(chǔ)上延長AB到點F,使BF=AB,連接FD,FE,得到(如圖2).若陰影部分的面積為,則= (用a含的代數(shù)式表示);

(3)發(fā)現(xiàn):像上面那樣,將各邊均順次延長一倍,連接所得端點,得到(如圖2),此時,我們稱向外擴展了一次.可以發(fā)現(xiàn),擴展n次后得到的三角形的面積是面積的 倍(用含n的代數(shù)式表示);

(4)應(yīng)用:某市準備在市民廣場一塊足夠大的空地上栽種牡丹花卉,工程人員進行了如下的圖案設(shè)計:首先在的空地上種紫色牡丹,然后將向外擴展二次(如圖3).在第一次擴展區(qū)域內(nèi)種黃色牡丹,第二次擴展區(qū)域內(nèi)種紫色牡丹,紫色牡丹花的種植成本為100元/平方米,黃色牡丹花的種植成本為95元/平方米.要使得種植費用不超過48700元,工程人員在設(shè)計時,三角形的面積至多為多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,平分,,,求的度數(shù).對于上述問題,在以下解答過程的空白處填上適當?shù)膬?nèi)容(理由或數(shù)學(xué)式).

解:∵,平分______

__________________.(角平分線的定義)

(已知)

__________________.(______

______

(等式的性質(zhì))

______(等量代換)

______.

(已知)

______

在直角三角形中,

______

(等式的性質(zhì))

______(等量代換)

______.

查看答案和解析>>

同步練習(xí)冊答案