【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經過原點的一條直線將這八個正方形分成面積相等的兩部分,則該直線的解析式為( )
A. B. C. D.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,,點為上的動點,且.
(1)求的長度;
(2)在點D運動的過程中,弦AD的延長線交BC的延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.
(3)在點D的運動過程中,過A點作AH⊥BD,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P,Q是方格紙中的兩格點,請按要求畫出以PQ為對角線的格點四邊形.
(1)在圖1中畫出一個面積最小的¨PAQB;
(2)在圖2中畫出一個四邊形PCQD,使其是軸對稱圖形而不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點為旋轉中心旋轉得到.注:圖1,圖2在答題紙上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,A(-2,0),B(0,4),以 B 點為直角頂點在第二象限作等腰直角△ABC.
(1)求 C 點的坐標;
(2)在坐標平面內是否存在一點 P,使△PAB 與△ABC 全等?若存在,直接寫出 P 點坐標,若不存在,請說明理由;
(3)如圖 2,點 E 為 y 軸正半軸上一動點, 以 E 為直角頂點作等腰直角△AEM,過 M 作 MN⊥x 軸于 N,求 OE-MN 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.如果一個圖形是中心對稱圖形,那么它一定不是軸對稱圖形
B.正方形是軸對稱圖形,它共有兩條對稱軸
C.等邊三角形是旋轉對稱圖形,它的最小旋轉角等于度
D.平行四邊形是中心對稱圖形,其對稱中心是它的一條對角線的中點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】規(guī)定兩數a、b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為,所以(2,8)=3.
(1)根據上述規(guī)定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:,他給出了如下的證明:
設,則,即
∴,即,
∴.
請你嘗試運用上述這種方法說明下面這個等式成立的理由.
(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
即∠ =∠ ( )
∴∠3=∠
∴AD∥BE( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,一次函數y=x+3的圖象分別與x軸、y軸相交于點A、B,且與經過點C(2,0)的一次函數y=kx+b的圖象相交于點D,點D的橫坐標為4,直線CD與y軸相交于點E.
(1)直線CD的函數表達式為 ;(直接寫出結果)
(2)點Q為線段DE上的一個動點,連接BQ.
①若直線BQ將△BDE的面積分為1:2兩部分,試求點Q的坐標;
②點Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的坐標軸上?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:,OB,OM,ON是內的射線.
如圖1,若OM平分,ON平分當射線OB繞點O在內旋轉時,______度
也是內的射線,如圖2,若,OM平分,ON平分,當繞點O在內旋轉時,求的大小.
在的條件下,若,當在繞O點以每秒的速度逆時針旋轉t秒,如圖3,若::3,求t的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com