【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

【答案】
(1)證明:連接OD,與AF相交于點(diǎn)G,

∵CE與⊙O相切于點(diǎn)D,

∴OD⊥CE,

∴∠CDO=90°,

∵AD∥OC,

∴∠ADO=∠DOC,∠DAO=∠BOC,

∵OA=OD,

∴∠ADO=∠DAO,

∴∠DOC=∠BOC,

在△CDO和△CBO中,

,

∴△CDO≌△CBO,

∴∠CBO=∠CDO=90°,

∴CB是⊙O的切線


(2)解:由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,

∵∠ECB=60°,

∴∠DCO=∠BCO= ∠ECB=30°,

∴∠DOC=∠BOC=60°,

∴∠DOA=60°,

∵OA=OD,

∴△OAD是等邊三角形,

∴AD=OD=OF,∵∠GOF=∠ADO,

在△ADG和△FOG中,

,

∴△ADG≌△FOG,

∴SADG=SFOG

∵AB=6,

∴⊙O的半徑r=3,

∴S=S扇形ODF= = π.


【解析】(1)欲證明CB是⊙O的切線,只要證明BC⊥OB,可以證明△CDO≌△CBO解決問(wèn)題.(2)首先證明S=S扇形ODF , 然后利用扇形面積公式計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一張矩形的紙片進(jìn)行折疊,具體操作過(guò)程如下: 第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1);
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得Rt△AB′E,如圖(2);
第三步:沿EB′線折疊得折痕EF,如圖(3).
若AB= ,則EF的值是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,第一個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(0,4),延長(zhǎng)CBx軸于點(diǎn)A1,作第二個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第三個(gè)正方形A2B2C2C1按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為(  )

A. 20×(2017 B. 20×(2018 C. 20×(4036 D. 20×(4034

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一動(dòng)點(diǎn),點(diǎn)D,E分別是ACBC中點(diǎn).

1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm;

2)若AC=4cm,求DE的長(zhǎng);

3)試說(shuō)明無(wú)論AC取何值(不超過(guò)12cm),DE的長(zhǎng)不變;

4)如圖②,已知∠AOB=120°,過(guò)角的內(nèi)部任一點(diǎn)C畫(huà)射線OC.OD,OE分別平分∠AOC和∠BOC.試說(shuō)明∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩根旗桿ACBD相距12m,某人從B點(diǎn)沿AB走向A,一定時(shí)間后他到達(dá)點(diǎn)M,此時(shí)他仰望旗桿的頂點(diǎn)CD,兩次視線夾角為90°,且CM=DM.已知旗桿AC的高為3m,該人的運(yùn)動(dòng)速度為0、5m/s,求這個(gè)人走了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時(shí),求線段DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.

(1)如圖①,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù);

(2)如圖②,若射線OC在∠AOB內(nèi)部繞O點(diǎn)旋轉(zhuǎn),當(dāng)∠BOC=α時(shí),求∠DOE的度數(shù).

(3)如圖③,當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)時(shí),畫(huà)出圖形,直接寫(xiě)出∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn),若以點(diǎn)P、B、C為頂點(diǎn)的三角形是等腰三角形,則P、D(P、D兩點(diǎn)不重合)兩點(diǎn)間的最短距離為

查看答案和解析>>

同步練習(xí)冊(cè)答案