【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過(guò)點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
【答案】
(1)
解:將點(diǎn)B(6,0)、C(0,6)代入y=﹣ x2+bx+c中,
得: ,解得: ,
∴拋物線的解析式為y=﹣ x2+2x+6.
∵y=﹣ x2+2x+6=﹣ (x﹣2)2+8,
∴點(diǎn)D的坐標(biāo)為(2,8).
(2)
解:設(shè)線段BF與y軸交點(diǎn)為點(diǎn)F′,設(shè)點(diǎn)F′的坐標(biāo)為(0,m),如圖1所示.
∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,
∴△F′BO∽△BDE,
∴ .
∵點(diǎn)B(6,0),點(diǎn)D(2,8),
∴點(diǎn)E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,
∴OF′= OB=3,
∴點(diǎn)F′(0,3)或(0,﹣3).
設(shè)直線BF的解析式為y=kx±3,
則有0=6k+3或0=6k﹣3,
解得:k=﹣ 或k= ,
∴直線BF的解析式為y=﹣ x+3或y= x﹣3.
聯(lián)立直線BF與拋物線的解析式得: ①或 ②,
解方程組①得: 或 (舍去),
∴點(diǎn)F的坐標(biāo)為(﹣1, );
解方程組②得: 或 (舍去),
∴點(diǎn)F的坐標(biāo)為(﹣3,﹣ ).
綜上可知:點(diǎn)F的坐標(biāo)為(﹣1, )或(﹣3,﹣ )
(3)
解:設(shè)對(duì)角線MN、PQ交于點(diǎn)O′,如圖2所示.
∵點(diǎn)M、N關(guān)于拋物線對(duì)稱軸對(duì)稱,且四邊形MPNQ為正方形,
∴點(diǎn)P為拋物線對(duì)稱軸與x軸的交點(diǎn),點(diǎn)Q在拋物線對(duì)稱軸上,
設(shè)點(diǎn)Q的坐標(biāo)為(2,2n),則點(diǎn)M的坐標(biāo)為(2﹣n,n).
∵點(diǎn)M在拋物線y=﹣ x2+2x+6的圖象上,
∴n=﹣ +2(2﹣n)+6,即n2+2n﹣16=0,
解得:n1= ﹣1,n2=﹣ ﹣1.
∴點(diǎn)Q的坐標(biāo)為(2,2 ﹣2)或(2,﹣2 ﹣2).
【解析】(1)由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式,再利用配方法將拋物線解析式變形成頂點(diǎn)式即可得出結(jié)論;(2)設(shè)線段BF與y軸交點(diǎn)為點(diǎn)F′,設(shè)點(diǎn)F′的坐標(biāo)為(0,m),由相似三角形的判定及性質(zhì)可得出點(diǎn)F′的坐標(biāo),根據(jù)點(diǎn)B、F′的坐標(biāo)利用待定系數(shù)法可求出直線BF的解析式,聯(lián)立直線BF和拋物線的解析式成方程組,解方程組即可求出點(diǎn)F的坐標(biāo);(3)設(shè)對(duì)角線MN、PQ交于點(diǎn)O′,如圖2所示.根據(jù)拋物線的對(duì)稱性結(jié)合正方形的性質(zhì)可得出點(diǎn)P、Q的位置,設(shè)出點(diǎn)Q的坐標(biāo)為(2,2n),由正方形的性質(zhì)可得出點(diǎn)M的坐標(biāo)為(2﹣n,n).由點(diǎn)M在拋物線圖象上,即可得出關(guān)于n的一元二次方程,解方程可求出n值,代入點(diǎn)Q的坐標(biāo)即可得出結(jié)論.本題考查了待定系數(shù)法求函數(shù)解析式、相似三角形的判定及性質(zhì)、正方形的性質(zhì)及解一元二次方程,解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)求出直線BF的解析式;(3)得出關(guān)于n的一元二次方程.本題屬于中檔題,難度不大,解決該題型題目時(shí),找出點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形,以及對(duì)相似三角形的性質(zhì)的理解,了解對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分) 把一張矩形ABCD紙片按如圖方式折疊,使點(diǎn)A與點(diǎn)E重合,點(diǎn)C與點(diǎn)F重合(E、F兩點(diǎn)均在BD上),折痕分別為BH、DG.
(1)求證:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求線段FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時(shí)某臺(tái)風(fēng)中心在海域B處,在沿海城市A的正南方向240千米,其中心風(fēng)力為12級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心25千米,臺(tái)風(fēng)就會(huì)減弱一級(jí),如圖所示,該臺(tái)風(fēng)中心正以20千米/時(shí)的速度沿北偏東30°方向向C移動(dòng),且臺(tái)風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過(guò)4級(jí),則稱受臺(tái)風(fēng)影響. 試問(wèn):
(1)A城市是否會(huì)受到臺(tái)風(fēng)影響?請(qǐng)說(shuō)明理由.
(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長(zhǎng)?
(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點(diǎn)D,E,過(guò)點(diǎn)D作DF⊥AC,垂足為F,線段FD,AB的延長(zhǎng)線相交于點(diǎn)G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF= ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等腰三角形,,.
尺規(guī)作圖:作的角平分線BD,交AC于點(diǎn)保留作圖痕跡,不寫作法;
判斷是否為等腰三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對(duì)自己做錯(cuò)的題目進(jìn)行整理、分析、改正”(選項(xiàng)為:很少、有時(shí)、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題
(1)該調(diào)查的樣本容量為 , a=%,b=%,“常常”對(duì)應(yīng)扇形的圓心角為°
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有3200名學(xué)生,請(qǐng)你估計(jì)其中“總是”對(duì)錯(cuò)題進(jìn)行整理、分析、改正的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點(diǎn)C沿順時(shí)針?lè)较蛐D(zhuǎn)后得到三角形A′B′C,若點(diǎn)B′恰好落在線段AB上,AC、A′B′交于點(diǎn)O,則∠COA′的度數(shù)是( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是我國(guó)幾家銀行的標(biāo)志,其中即是軸對(duì)稱圖形又是中心對(duì)稱圖形的有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com