精英家教網 > 初中數學 > 題目詳情

【題目】若關于x的方程mxm2-m+3=0是一元一次方程,則這個方程的解是( )
A.x=0
B.x=3
C.x=-3
D.x=2

【答案】A
【解析】只含有一個未知數(元),并且未知數的指數是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常數且a≠0),高于一次的項系數是0.
解:由一元一次方程的特點得m﹣2=1,即m=3,
則這個方程是3x=0,
解得:x=0.
故答案為:A.
根據一元一次方程的定義可得m﹣2=1,則m的值可求,再把m的值代入方程中即可求解。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】現今世界上較先進的計算機顯卡每秒可繪制出27 000 000個三角形,且顯示逼真,用科學記數法表示這種顯卡每秒繪制出三角形個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),ABC經過平移得到的A′B′C′,ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4).

(1)請在圖中作出A′B′C′;

(2)寫出點A′、B′、C′的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個多項式與﹣x2﹣2x+11的和是3x﹣2,則這個多項式為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】三角形三邊之比為3:5:7,與它相似的三角形的最長邊為21cm,則其余兩邊之和為( )

A. 32cm B. 24cm C. 18cm D. 16cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解我縣七年級2000名學生的身高情況,從中抽取了200學生測量身高,在這個問題中,樣本是( )
A.200
B.2000名學生
C.200名學生的身高情況
D.200名學生

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點O.將直線AC繞點O順時針旋轉分別交BC、AD于點E、F.

1試說明在旋轉過程中,AF與CE總保持相等;

2證明:當旋轉角為90°時,四邊形ABEF是平行四邊形;

3在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,求出此時AC繞點O順時針旋轉的角度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數據:

摸球的次數

100

200

300

500

800

1000

3000

摸到白球的次數

65

124

178

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)請估計:當很大時,摸到白球的頻率將會接近 .(精確到0.1

2)假如你摸一次,你摸到白球的概率P(白球)=

3)試估算盒子里黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形 ABCD中,AB=10cm,BC=8cm.點P從A出發(fā),沿ABCD路線運動,到D停止;點Q從D出發(fā),沿 DCBA路線運動,到A停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,a秒時點P、點Q同時改變速度,點P的速度變?yōu)槊棵隻cm,點Q的速度變?yōu)槊棵雂cm.圖是點P出發(fā)x秒后APD的面積S1(cm2)與x(秒)的函數關系圖象;圖是點Q出發(fā)x秒后AQD的面積S2(cm2)與x(秒)的函數關系圖象.

(1)、參照圖象,求b、圖中c及d的值;

(2)、連接PQ,當PQ平分矩形ABCD的面積時,運動時間x的值為

(3)、當兩點改變速度后,設點P、Q在運動線路上相距的路程為y(cm),求y(cm)與運動時間x(秒)之間的函數關系式,并寫出自變量x的取值范圍;

(4)、若點P、點Q在運動路線上相距的路程為25cm,求x的值.

查看答案和解析>>

同步練習冊答案