【題目】某電商在購(gòu)物平臺(tái)上銷售一款小電器,其進(jìn)價(jià)為件,每銷售一件需繳納平臺(tái)推廣費(fèi)元,該款小電器每天的銷售量(件)與每件的銷售價(jià)格(元)滿足函數(shù)關(guān)系:.為保證市場(chǎng)穩(wěn)定,供貨商規(guī)定銷售價(jià)格不得低于件且不得高于件.

1)寫出每天的銷售利潤(rùn)(元)與銷售價(jià)格(元)的函數(shù)關(guān)系式;

2)每件小電器的銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤(rùn)最大,最大是多少元?

【答案】1;(2)當(dāng)時(shí),w有最大值,最大值為750

【解析】

1)直接利用“總利潤(rùn)=每件的利潤(rùn)×銷量”得出函數(shù)關(guān)系式;
2)由(1)中的函數(shù)解析式,將其配方成頂點(diǎn)式,結(jié)合x的取值范圍,利用二次函數(shù)的性質(zhì)解答即可.

1)依題意得:

2

∴當(dāng),wx的增大而減小

∴當(dāng)時(shí),w有最大值,

最大值為:元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩函數(shù):反比例函數(shù)和二次函數(shù)yx2+x+a

1)若兩個(gè)函數(shù)的圖象都經(jīng)過(guò)點(diǎn)(2,2).

求兩函數(shù)的表達(dá)式;

證明反比例函數(shù)的圖象經(jīng)過(guò)二次函數(shù)圖象的頂點(diǎn).

2)若二次函數(shù)yx2+x+a的圖象與x軸有兩個(gè)不同的交點(diǎn),是否存在實(shí)數(shù)a,使方程x2+x+a0的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于﹣1?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課堂上,為了學(xué)習(xí)構(gòu)成任意三角形三邊需要滿足的條件.甲組準(zhǔn)備3根本條,長(zhǎng)度分別是3cm、8cm13cm;乙組準(zhǔn)備3根本條,長(zhǎng)度分別是4cm、6cm12cm.老師先從甲組再?gòu)囊医M分別隨機(jī)抽出一根本條,放在一起組成一組.

1)用畫樹(shù)狀圖法(或列表法)分析,并列出各組可能.(畫樹(shù)狀圖或列表及列出可能時(shí)不用寫單位)

2)現(xiàn)在老師也有一根本條,長(zhǎng)度為5cm,與(1)中各組本條組成三角形的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊銳角三角形卡紙余料ABC,它的邊BC=120cm,高AD=80cm,為使卡紙余料得到充分利用,現(xiàn)把它裁剪成一個(gè)鄰邊之比為25的矩形紙片EFGH和正方形紙片PMNQ,裁剪時(shí),矩形紙片的較長(zhǎng)邊在BC上,正方形紙片一邊在矩形紙片的較長(zhǎng)邊EH上,其余頂點(diǎn)均分別在ABAC上,具體裁剪方式如圖所示。

1)求矩形紙片較長(zhǎng)邊EH的長(zhǎng);

2)裁剪正方形紙片時(shí),小聰同學(xué)是按以下方法進(jìn)行裁剪的:先沿著剩余料中與邊EH平行的中位線剪一刀,再沿過(guò)該中位線兩端點(diǎn)向邊EH所作的垂線剪兩刀,請(qǐng)你通過(guò)計(jì)算,判斷小聰?shù)募舴ㄊ欠裾_.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)CB分別在軸、軸上,ABC是等腰直角三角形,∠BAC90°,已知A2,2)、P1,0).MBC的中點(diǎn),則PM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市精準(zhǔn)扶貧工作已經(jīng)進(jìn)入攻堅(jiān)階段,貧困的張大爺在某單位的幫扶下,把一片坡地改造后種植了大櫻桃.今年正式上市銷售,在銷售30天中,第一天賣出20千克,為了擴(kuò)大銷量,在一段時(shí)間內(nèi)采取降價(jià)措施,每天比前一天多賣出4千克.當(dāng)售價(jià)不變時(shí),銷售量也不發(fā)生變化.已知種植銷售大櫻桃的成本為18元/千克,設(shè)第天的銷售價(jià)元/千克,函數(shù)關(guān)系如下表:

表一

天數(shù)

1

2

3

……

……

20

售價(jià)(元/千克)

37.5

37

36.5

……

……

28

表二

天數(shù)

21

22

……

……

30

售價(jià)(元/千克)

28

28

……

……

28

1)求函數(shù)解析式;

2)求銷售大櫻桃第幾天時(shí),當(dāng)天的利潤(rùn)最大?最大利潤(rùn)是多少?

3)銷售大櫻桃的30天中,當(dāng)天利潤(rùn)不低于元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB,CD是直徑,BE是切線,B為切點(diǎn),連接AD,BC,BD

1)求證:△ABD≌△CDB;

2)若∠DBE=37°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?

2)能否使所圍矩形場(chǎng)地的面積為810m2,為什么?

3)怎樣圍才能使圍出的矩形場(chǎng)地面積最大?最大面積為多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案