【題目】某家電銷售商場電冰箱的銷售價為每臺1600元,空調(diào)的銷售價為每臺1400元,每臺電冰箱的進(jìn)價比每臺空調(diào)的進(jìn)價多300元,商場用9000元購進(jìn)電冰箱的數(shù)量與用7200元購進(jìn)空調(diào)數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進(jìn)價分別是多少?
(2)現(xiàn)在商場準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?
(3)實(shí)際進(jìn)貨時,廠家對電冰箱出廠價下調(diào)K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺家電銷售總利潤最大的進(jìn)貨方案.
【答案】(1)每臺空調(diào)的進(jìn)價為1200元,每臺電冰箱的進(jìn)價為1500元;(2)共有5種方案;
(3)當(dāng)100<k<150時,購進(jìn)電冰箱38臺,空調(diào)62臺,總利潤最大;當(dāng)0<k<100時,購進(jìn)電冰箱34臺,空調(diào)66臺,總利潤最大,當(dāng)k=100時,無論采取哪種方案,y1恒為20000元.
【解析】
(1)用“用9000元購進(jìn)電冰箱的數(shù)量與用7200元購進(jìn)空調(diào)數(shù)量相等”建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結(jié)論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.
(1)設(shè)每臺空調(diào)的進(jìn)價為m元,則每臺電冰箱的進(jìn)價(m+300)元,
由題意得,,
∴m=1200,
經(jīng)檢驗(yàn),m=1200是原分式方程的解,也符合題意,
∴m+300=1500元,
答:每臺空調(diào)的進(jìn)價為1200元,每臺電冰箱的進(jìn)價為1500元;
(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
∵,
∴33≤x≤38,
∵x為正整數(shù),
∴x=34,35,36,37,38,
即:共有5種方案;
(3)設(shè)廠家對電冰箱出廠價下調(diào)k(0<k<150)元后,這100臺家電的銷售總利潤為y1元,
∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
當(dāng)100<k<150時,y1隨x的最大而增大,
∴x=38時,y1取得最大值,
即:購進(jìn)電冰箱38臺,空調(diào)62臺,總利潤最大,
當(dāng)0<k<100時,y1隨x的最大而減小,
∴x=34時,y1取得最大值,
即:購進(jìn)電冰箱34臺,空調(diào)66臺,總利潤最大,
當(dāng)k=100時,無論采取哪種方案,y1恒為20000元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形四邊形,它們的面積比為,它們的對應(yīng)對角線的比為________,若它們的周長之差為,則四邊形的周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,是的中點(diǎn),點(diǎn)以每秒1個單位長度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動;點(diǎn)同時以每秒2個單位長度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動,點(diǎn)停止運(yùn)動時,點(diǎn)也隨之停止運(yùn)動.當(dāng)運(yùn)動時間______秒時,以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形DOBC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,B、D分別在坐標(biāo)軸上,點(diǎn)C的坐標(biāo)為(6,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.
(1)求反比例函數(shù)的解析式;
(2)求△OEF的面積;
(3)設(shè)直線EF的解析式為y=k2x+b,請結(jié)合圖象直接寫出不等式k2x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點(diǎn)O,直線與x軸、y軸分別相交于A,B兩點(diǎn).
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在圓M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得S△PDE=S△ABC?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著春節(jié)臨近,某兒童游樂場推出了甲、乙兩種消費(fèi)卡,設(shè)消費(fèi)次數(shù)為時,所需費(fèi)用為元,且與的函數(shù)關(guān)系如圖所示. 根據(jù)圖中信息,解答下列問題;
(1)分別求出選擇這兩種卡消費(fèi)時,關(guān)于的函數(shù)表達(dá)式.
(2)求出點(diǎn)坐標(biāo).
(3)洋洋爸爸準(zhǔn)備元錢用于洋洋在該游樂場消費(fèi),請問選擇哪種消費(fèi)卡劃算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線經(jīng)過點(diǎn),點(diǎn)是雙曲線第三象限分支上的動點(diǎn),過點(diǎn)作軸,過點(diǎn)作軸,垂足分別為,,連接,.
求的值;
若的面積為,
①若直線的解析式為,求、的值;
②根據(jù)圖象,直接寫出時的取值范圍;
③判斷直線與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一拱形隧道的輪廓是拋物線如圖,拱高,跨度.
建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拱形隧道的拋物線關(guān)系式;
拱形隧道下地平面是雙向行車道(正中間是一條寬的隔離帶),其中的一條行車道能否并排行駛寬,高的三輛汽車(汽車間的間隔忽略不計(jì))?請說說你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com