【題目】如圖,E是四邊形ABCD的邊AB上一點.
(1)猜想論證:如圖,分別連接DE、CE,若∠A=∠B=∠DEC=65°,試猜想圖中哪兩個三角形相似,并說明理由.
(2)觀察作圖:如圖,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網格(網格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖中矩形ABCD的邊AB上畫出所有滿足條件的點E(點E與點A,B 不重合),分別連結ED,EC,使四邊形ABCD被分成的三個三角形相似(不證明).
(3)拓展探究:如圖,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好將四邊形ABCM分成的三個三角形相似,請直接寫出的值.
【答案】(1)△ADE∽△BEC;(2)見解析;(3)=.
【解析】
試題分析:(1)△ADE∽△BEC,理由為:利用三角形內角和定理及鄰補角定義得到一對角相等,再由已知角相等,利用兩角相等的三角形相似即可得證;
(2)如圖②a與圖②b所示,點E為所求的點;
(3)由點E恰好將四邊形ABCM分成的三個三角形相似,利用相似三角形對應角相等得到三個角相等,再由折疊的性質得到∠DCM=∠MCE=∠BCE=30°,EC=CD=AB,在Rt△BCE中,利用銳角三角函數(shù)定義求出所求式子比值即可.
解:(1)△ADE∽△BEC,理由為:
∵∠A=65°,
∴∠ADE+∠DEA=115°,
∵∠DEC=65°,
∴∠BEC+∠DEA=115°,
∴∠ADE=∠BEC,
∵∠A=∠B,
∴△ADE∽△BEC;
(2)作圖如下:
(3)∵點E恰好將四邊形ABCM分成的三個三角形相似,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM,
由折疊可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠ECM=∠DCM=30°,
∴DC=CE=AB,
在Rt△BCE中,cos∠BCE==cos30°,
∴=.
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下列條件,能判定一個三角形是直角三角形的是( )
A.三條邊的邊長之比是1:2:3
B.三個內角的度數(shù)之比是1:1:2
C.三條邊的邊長分別是,,
D.三條邊的邊長分別是12,15,20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】所謂配方,就是把一個多項式經過適當變形配成完全平方式.配方法除一元二次方程求根公式推導這一典型應用外,在因式分解、化簡二次根式、證明恒等式、解方程、求代數(shù)式最值等問題中都有廣泛應用.是一種很重要、很基本的數(shù)學方法.如以下例1,例2:
例1:分解因式 x2﹣120x+3456
解:原式=x2﹣120x+3600+3456﹣3600
=(x﹣60)2﹣144
=(x﹣60+12)(x﹣60﹣12)
=(x﹣48)(x﹣72)
例2:化簡:
解:原式=
=
=﹣
閱讀以上材料,請問答以下問題:
(1)分解因式:x2﹣40x+319= ;
(2)化簡:;
(3)利用配方法求4x2+y2﹣2y﹣4x+15的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有客房200間供游客居住,當每間客房的定價為每天180元時,客房恰好全部住滿;如果每間客房每天的定價每增加10元,就會減少4間客房出租.設每間客房每天的定價增加元,賓館出租的客房為間.求:
(1)關于的函數(shù)關系式;
(2)如果某天賓館客房收入38400元,那么這天每間客房的價格是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側分別作正△ABC和正△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結論有 .(把你認為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰三角形兩邊長分別是2 cm和5 cm,則這個三角形周長是( )
A. 9 cm B. 12 cm C. 9 cm或12 cm D. 14 cm
查看答案和解析>>
科目:
來源: 題型:【題目】下列命題:
①如果a,b,c為一組勾股數(shù),那么4a,4b,4c仍是勾股數(shù);
②如果直角三角形的兩邊是5、12,那么斜邊必是13;
③如果一個三角形的三邊是12、25、21,那么此三角形必是直角三角形;
④一個等腰直角三角形的三邊是a,b,c(a>b=c),那么a2:b2:c2=2:1:1.
其中正確的是( )
A.①② B.①③ C.①④ D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)、如圖(1),AB∥CD,點P在AB、CD外部,若∠B=40°,∠D=15°,則∠BPD °.
(2)、如圖(2),AB∥CD,點P在AB、CD內部,則∠B,∠BPD,∠D之間有何數(shù)量關系?證明你的結論;
(3)、在圖(2)中,將直線AB繞點B按逆時針方向旋轉一定角度交直線CD于點M,如圖(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com